scholarly journals How the colonic environment influences Enterohaemorrhagic E. coli outer membrane vesicle production, and the interaction between outer membrane vesicles with human host cells

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Daniel Yara ◽  
Regis Stentz ◽  
Tom Wileman ◽  
Stephanie Schuller

Enterohaemorrhagic E. coli (EHEC) may instigate bloody diarrhoea and haemolytic uraemic syndrome (HUS) due to Shiga toxin (Stx) production. Stx has been detected within outer membrane vesicles (OMVs), which are membrane-derived nanosized proteoliposomes. During colonisation, EHEC encounters many environmental surroundings such as the presence of bile salts and carbon dioxide (CO2). Here, the influence of different intestinal cues on EHEC OMV production was studied. OMV yield was quantified by densitometric analysis of outer membrane proteins F/C and A, following OMV protein separation by SDS-PAGE. Compared to cultures in Luria broth, higher OMV yields were attained following culture in human cell growth medium and simulated colonic environmental medium, with further increases in the presence of bile salts. Interestingly, lower yields were attained in the presence of T84 cells and CO2. The interaction between OMVs and different human cells was also examined by fluorescence microscopy. Here, OMVs incubated with cells showed internalisation by semi confluent but not fully confluent T84 cell monolayers. OMVs were internalised into the lysosomes in confluent Vero and Caco-2 cells, with Stx being transported to the Golgi and then the Endoplasmic reticulum. OMVs were detected within polarised Caco-2 cells, with no impact on the transepithelial electrical resistance by 24 hours. These results suggest that the colonic environmental factors influences OMV production in vivo. Additionally, results highlight the discrepancies which arise when using different cells lines to examine the intestine. Nevertheless, coupled with Stx, OMVs may serve as tools of EHEC which are involved in HUS development.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1661
Author(s):  
Mei-Hsiu Chen ◽  
Tse-Ying Liu ◽  
Yu-Chiao Chen ◽  
Ming-Hong Chen

Glioblastoma, formerly known as glioblastoma multiforme (GBM), is refractory to existing adjuvant chemotherapy and radiotherapy. We successfully synthesized a complex, Au–OMV, with two specific nanoparticles: gold nanoparticles (AuNPs) and outer-membrane vesicles (OMVs) from E. coli. Au–OMV, when combined with radiotherapy, produced radiosensitizing and immuno-modulatory effects that successfully suppressed tumor growth in both subcutaneous G261 tumor-bearing and in situ (brain) tumor-bearing C57BL/6 mice. Longer survival was also noted with in situ tumor-bearing mice treated with Au–OMV and radiotherapy. The mechanisms for the successful treatment were evaluated. Intracellular reactive oxygen species (ROS) greatly increased in response to Au–OMV in combination with radiotherapy in G261 glioma cells. Furthermore, with a co-culture of G261 glioma cells and RAW 264.7 macrophages, we found that GL261 cell viability was related to chemotaxis of macrophages and TNF-α production.


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Tanja Fischer ◽  
Martin Schorb ◽  
Greta Reintjes ◽  
Androniki Kolovou ◽  
Rachel Santarella-Mellwig ◽  
...  

ABSTRACT Large surface-to-volume ratios provide optimal nutrient uptake conditions for small microorganisms in oligotrophic habitats. The surface area can be increased with appendages. Here, we describe chains of interconnecting vesicles protruding from cells of strain Hel3_A1_48, affiliating with Formosa spp. within the Flavobacteriia and originating from coastal free-living bacterioplankton. The chains were up to 10 μm long and had vesicles emanating from the outer membrane with a single membrane and a size of 80 to 100 nm by 50 to 80 nm. Cells extruded membrane tubes in the exponential phase, whereas vesicle chains dominated on cells in the stationary growth phase. This formation is known as pearling, a physical morphogenic process in which membrane tubes protrude from liposomes and transform into chains of interconnected vesicles. Proteomes of whole-cell membranes and of detached vesicles were dominated by outer membrane proteins, including the type IX secretion system and surface-attached peptidases, glycoside hydrolases, and endonucleases. Fluorescein-labeled laminarin stained the cells and the vesicle chains. Thus, the appendages provide binding domains and degradative enzymes on their surfaces and probably storage volume in the vesicle lumen. Both may contribute to the high abundance of these Formosa-affiliated bacteria during laminarin utilization shortly after spring algal blooms. IMPORTANCE Microorganisms produce membrane vesicles. One synthesis pathway seems to be pearling that describes the physical formation of vesicle chains from phospholipid vesicles via extended tubes. Bacteria with vesicle chains had been observed as well as bacteria with tubes, but pearling was so far not observed. Here, we report the observation of, initially, tubes and then vesicle chains during the growth of a flavobacterium, suggesting biopearling of vesicle chains. The flavobacterium is abundant during spring bacterioplankton blooms developing after algal blooms and has a special set of enzymes for laminarin, the major storage polysaccharide of microalgae. We demonstrated with fluorescently labeled laminarin that the vesicle chains bind laminarin or contain laminarin-derived compounds. Proteomic analyses revealed surface-attached degradative enzymes on the outer membrane vesicles. We conclude that the large surface area and the lumen of vesicle chains may contribute to the ecological success of this marine bacterium.


2001 ◽  
Vol 2 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Darren J. Trott ◽  
David P. Alt ◽  
Richard L. Zuerner ◽  
Michael J. Wannemuehler ◽  
Thaddeus B. Stanton

AbstractLittle is known about the outer membrane structure ofBrachyspira hyodysenteriae and Brachyspira pilosicolior the role of outer membrane proteins (OMPs) in host colonization and the development of disease. The isolation of outer membrane vesicles fromB. hyodysenteriaehas confirmed that cholesterol is a significant outer membrane constituent and that it may impart unique characteristics to the lipid bilayer structure, including a reduced density. Unique proteins that have been identified in theB. hyodysenteriaeouter membrane include the variable surface proteins (Vsp) and lipoproteins such as SmpA and BmpB. While the function of these proteins remains to be determined, there is indirect evidence to suggest that they may be involved in immune evasion. These data may explain the ability of the organism to initiate chronic infection. OMPs may be responsible for the unique attachment ofB. pilosicolito colonic epithelial cells; however, the onlyB. pilosicoliOMPs that have been identified to date are involved in metabolism. In order to identify furtherB. pilosicoliOMPs we have isolated membrane vesicle fractions from porcine strain 95–1000 by osmotic lysis and isopycnic centrifugation. The fractions were free of contamination by cytoplasm and fla-gella and contained outer membrane. Inner membrane contamination was minimal but could not be completely excluded. An abundant 45-kDa, heat-modifiable protein was shown to have significant homology withB. hyodysenteriaeVsp, and monoclonal antibodies were produced that reacted with fiveB. pilosicoli-specificmembrane protein epitopes. The first of these proteins to be characterized is a unique surface-exposed lipoprotein.


2019 ◽  
Vol 5 (4) ◽  
pp. 184-198 ◽  
Author(s):  
Guangchao Qing ◽  
Ningqiang Gong ◽  
Xiaohui Chen ◽  
Jing Chen ◽  
Hong Zhang ◽  
...  

Abstract Bacterial outer membrane vesicle (OMV) is a kind of spherical lipid bilayer nanostructure naturally secreted by bacteria, which has diverse functions such as intracellular and extracellular communication, horizontal gene transfer, transfer of contents to host cells, and eliciting an immune response in host cells. In this review, several methods including ultracentrifugation and precipitation for isolating OMVs were summarized. The latest progresses of OMVs in biomedical fields, especially in vaccine development, cancer treatment, infection control, and bioimaging and detection were also summarized in this review. We highlighted the importance of genetic engineering for the safe and effective application and in facilitating the rapid development of OMVs. Finally, we discussed the bottleneck problems about OMVs in preparation and application at present and put forward our own suggestions about them. Some perspectives of OMVs in biomedical field were also provided.


2006 ◽  
Vol 188 (15) ◽  
pp. 5385-5392 ◽  
Author(s):  
Amanda J. McBroom ◽  
Alexandra P. Johnson ◽  
Sreekanth Vemulapalli ◽  
Meta J. Kuehn

ABSTRACT It has been long noted that gram-negative bacteria produce outer membrane vesicles, and recent data demonstrate that vesicles released by pathogenic strains can transmit virulence factors to host cells. However, the mechanism of vesicle release has remained undetermined. This genetic study addresses whether these structures are merely a result of membrane instability or are formed by a more directed process. To elucidate the regulatory mechanisms and physiological basis of vesiculation, we conducted a screen in Escherichia coli to identify gene disruptions that caused vesicle over- or underproduction. Only a few low-vesiculation mutants and no null mutants were recovered, suggesting that vesiculation may be a fundamental characteristic of gram-negative bacterial growth. Gene disruptions were identified that caused differences in vesicle production ranging from a 5-fold decrease to a 200-fold increase relative to wild-type levels. These disruptions included loci governing outer membrane components and peptidoglycan synthesis as well as the σE cell envelope stress response. Mutations causing vesicle overproduction did not result in upregulation of the ompC gene encoding a major outer membrane protein. Detergent sensitivity, leakiness, and growth characteristics of the novel vesiculation mutant strains did not correlate with vesiculation levels, demonstrating that vesicle production is not predictive of envelope instability.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Soni Priya Valeru ◽  
Salah Shanan ◽  
Haifa Alossimi ◽  
Amir Saeed ◽  
Gunnar Sandström ◽  
...  

Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive insideAcanthamoeba castellanii. It has been shown thatV. choleraeexpresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA) and outer membrane vesicles (OMVs) in survival ofV. choleraealone and during its interaction withA. castellanii. The results showed that anOmpAmutant ofV. choleraesurvived longer than wild-typeV. choleraewhen cultivated alone. Cocultivation withA. castellaniienhanced the survival of both bacterial strains andOmpAprotein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of theOmpAmutant ofV. choleraedecreased the viability ofA. castellaniiand this bacterial strain released more OMVs than wild-typeV. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from theOmpAmutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule forOmpAin survival ofV. choleraeand OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.


1983 ◽  
Vol 216 (1) ◽  
pp. 151-161 ◽  
Author(s):  
P J Evans ◽  
R J Mayer

Reductively [3H]methylated rat mitochondria and mitochondrial-outer-membrane vesicles and mitochondrial-outer-membrane vesicles where monoamine oxidase is irreversibly labelled by [3H]pargyline have been transplanted into hepatocytes by poly(ethylene glycol)-mediated organelle or organelle-vesicle cell fusion. During subsequent culture of hepatocyte monolayers for 4-5 days, under conditions which mimic endogenous catabolic rates in vivo the transplanted organelle proteins retain their degradation characteristics observed in vivo (e.g. mitochondria: average t 1/2 72.5 h; monoamine oxidase: t1/2 55 h). In all cases protein degradation with first-order kinetics is only observed after an initial lag period (i.e. 24-30 h after fusion). Transplantation of fluorescein-conjugated organelles showed that the fluorescent material is rapidly internalized (average t1/2 1-6 h) and uniformly distributed in the cytoplasm. During a subsequent 18-24 h period (which corresponds to the lag period for intracellular destruction of transplanted mitochondrial material) the transplanted material is translocated to assume a perinuclear distribution. The destruction of transplanted mitochondrial proteins is compared with endogenous mitoribosomally synthesized proteins (average t1/2 52.5 h). Percoll fractionation of cell homogenates containing transplanted mitochondrial outer membranes where the enzyme monoamine oxidase is irreversibly labelled with [3H]pargyline shows a distribution of enzyme similar to lysosomal acid phosphatase. After transplantation of reductively methylated 3H-labelled mitochondrial-outer-membrane vesicles the cells were treated with leupeptin to alter lysosomal density. This treatment leads to the predominant association of acid phosphatase with dense structures, whereas the 3H-labelled transplanted material predominantly does not change density. Therefore transplanted mitochondrial-outer-membrane proteins are found in intracellular vesicular structures from which the proteins are donated for destruction, at least in part, by a lysosomal mechanism.


2011 ◽  
Vol 79 (6) ◽  
pp. 2182-2192 ◽  
Author(s):  
Hyunjin Yoon ◽  
Charles Ansong ◽  
Joshua N. Adkins ◽  
Fred Heffron

ABSTRACTSalmonella entericaserovar Typhimurium, an intracellular pathogen and leading cause of food-borne illness, encodes a plethora of virulence effectors.Salmonellavirulence factors are translocated into host cells and manipulate host cellular activities, providing a more hospitable environment for bacterial proliferation. In this study, we report a new set of virulence factors that is translocated into the host cytoplasm via bacterial outer membrane vesicles (OMV). PagK (or PagK1), PagJ, and STM2585A (or PagK2) are small proteins composed of ∼70 amino acids and have high sequence homology to each other (>85% identity).Salmonellalacking all three homologues was attenuated for virulence in a mouse infection model, suggesting at least partial functional redundancy among the homologues. While each homologue was translocated into the macrophage cytoplasm, their translocation was independent of all threeSalmonellagene-encoded type III secretion systems (T3SSs)–Salmonellapathogenicity island 1 (SPI-1) T3SS, SPI-2 T3SS, and the flagellar system. Selected methods, including direct microscopy, demonstrated that the PagK-homologous proteins were secreted through OMV, which were enriched with lipopolysaccharide (LPS) and outer membrane proteins. Vesicles produced by intracellular bacteria also contained lysosome-associated membrane protein 1 (LAMP1), suggesting the possibility of OMV convergence with host cellular components during intracellular trafficking. This study identified novelSalmonellavirulence factors secreted via OMV and demonstrated that OMV can function as a vehicle to transfer virulence determinants to the cytoplasm of the infected host cell.


2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


Sign in / Sign up

Export Citation Format

Share Document