scholarly journals Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis

1993 ◽  
Vol 122 (3) ◽  
pp. 601-612 ◽  
Author(s):  
JA Porter ◽  
C Montell

The Drosophila ninaC locus encodes a rhabdomere specific protein (p174) with linked protein kinase and myosin domains, required for a wild-type ERG and to prevent retinal degeneration. To investigate the role for linked kinase and myosin domains, we analyzed mutants generated by site-directed mutagenesis. Mutation of the kinase domain resulted in an ERG phenotype but no retinal degeneration. Deletion of the myosin domain caused a change in the subcellular distribution of p174 and resulted in both ERG and retinal degeneration phenotypes. Temperature-sensitive mutations in the myosin domain resulted in retinal degeneration, but no ERG phenotype. These results indicated that the ERG and retinal degeneration phenotypes were not strictly coupled suggesting that the myosin domain has multiple functions. We propose that the role of the kinase domain is to regulate other rhabdomeric proteins important in phototransduction and that the myosin domain has at least two roles: to traffic the kinase into the rhabdomeres and to maintain the rhabdomeres.

1994 ◽  
Vol 300 (1) ◽  
pp. 111-115 ◽  
Author(s):  
M H Rider ◽  
K M Crepin ◽  
M De Cloedt ◽  
L Bertrand ◽  
L Hue

Asp-130 of the recombinant skeletal-muscle 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase was mutated into Ala in order to study its role in catalysis and/or substrate binding. The D130A mutant displayed a 30- to 140-fold decreased 2-kinase Vmax, depending on the pH, and a 30- and 60-fold increase in Km for MgATP and Fru-6-P respectively at pH 8.5 compared with the wild-type. Mutagenesis of Asp-130 to Ala had no effect on the 2-phosphatase activity, and fluorescence measurements indicated that the changes in kinetic properties of PFK-2 in the D130A mutant were not due to instability. The role of Asp-130 in the 2-kinase reaction is discussed and compared with that of Asp-103 of 6-phosphofructo-1-kinase from Escherichia coli, which binds Mg2+.


1987 ◽  
Author(s):  
G A Vehar ◽  
K M Tate ◽  
D L Higgins ◽  
W E Holmes ◽  
H L Heyneker

The significance of the cleavage at arginine-275 of human t-PA has been the subject of debate. It has been reported, as expected for a member of the serine protease family, that the single chain form is a zymogen and that generation of catalytic activity is dependent upon cleavage at arginine-275. Other groups, in contrast, have found considerable enzyme activity associated with the one-chain form of t-PA. To clarify the functional significance of this proteolysis and circumvent cleavage of one-chain t-PA by itself or plasmin, site-directed mutagenesis was employed to change the codon of arginine-275 to specify a glutamic acid. The resulting plasmid was used to transfect CHO cells. The single chain mutant [Glu-275 t-PA] was expressed in CHO cells and the protein purified by conventional techniques. The mutant enzyme could be converted to the two-chain form by V8 protease, but not by plasmin. Glu-275 t-PA was 8 times less active in the cleavage of a tripeptide substrate and 20-50 times less active in the activation of plasminogen in the absence of firbrin(ogen) than its two-chain form. In the presence of fibrin(ogen), in contrast, the one and two-chain forms of Glu-275 t-PA were equal in their ability to activate plasminogen in the presence of fibrin(ogen). The activity in these assays was equal to the activity of wild type t-PA. In addition, it was observed that fibrin bound considerably more of the one-chain form of t-PA than the two chain forms of t-PA and the Glu-275 mutant. The one and two-chain forms of the wild type and mutated t-PA were found to slowly form complexes with plasma protease inhibitors in vitro, although the one-chain forms were less reactive with alpha-2-macroglobulin. It can be concluded that the one-chain form of t-PA appears to be fully functional under physiologic conditions and has an increased affinity for fibrin compared to two-chain t-PA.


2005 ◽  
Vol 16 (3) ◽  
pp. 1355-1365 ◽  
Author(s):  
Masaya Take-uchi ◽  
Yuri Kobayashi ◽  
Koutarou D. Kimura ◽  
Takeshi Ishihara ◽  
Isao Katsura

The defecation behavior of the nematode Caenorhabditis elegans is controlled by a 45-s ultradian rhythm. An essential component of the clock that regulates the rhythm is the inositol trisphosphate receptor in the intestine, but other components remain to be discovered. Here, we show that the flr-4 gene, whose mutants exhibit very short defecation cycle periods, encodes a novel serine/threonine protein kinase with a carboxyl terminal hydrophobic region. The expression of functional flr-4::GFP was detected in the intestine, part of pharyngeal muscles and a pair of neurons, but expression of flr-4 in the intestine was sufficient for the wild-type phenotype. Furthermore, laser killing of the flr-4–expressing neurons did not change the defecation phenotypes of wild-type and flr-4 mutant animals. Temperature-shift experiments with a temperature-sensitive flr-4 mutant suggested that FLR-4 acts in a cell-functional rather than developmental aspect in the regulation of defecation rhythms. The function of FLR-4 was impaired by missense mutations in the kinase domain and near the hydrophobic region, where the latter allele seemed to be a weak antimorph. Thus, a novel protein kinase with a unique structural feature acts in the intestine to increase the length of defecation cycle periods.


2004 ◽  
Vol 78 (1) ◽  
pp. 257-265 ◽  
Author(s):  
Patricia Szajner ◽  
Andrea S. Weisberg ◽  
Bernard Moss

ABSTRACT Temperature-sensitive mutants of vaccinia virus, with genetic changes that map to the open reading frame encoding the F10 protein kinase, exhibit a defect at an early stage of viral morphogenesis. To further study the role of the enzyme, we constructed recombinant vaccinia virus vF10V5i, which expresses inducible V5 epitope-tagged F10 and is dependent on a chemical inducer for plaque formation and replication. In the absence of inducer, viral membrane formation was delayed and crescents and occasional immature forms were detected only late in infection. When the temperature was raised from 37 to 39°C, the block in membrane formation persisted throughout the infection. The increased stringency may be explained by a mild temperature sensitivity of the wild-type F10 kinase, which reduced the activity of the very small amount expressed in the absence of inducer, or by the thermolability of an unphosphorylated kinase substrate or uncomplexed F10-interacting protein. Further analyses demonstrated that tyrosine and threonine phosphorylation of the A17 membrane component was inhibited in the absence of inducer. The phosphorylation defect could be overcome by transfection of plasmids that express wild-type F10, but not by plasmids that express F10 with single amino acid substitutions that abolished catalytic activity. Although the mutated forms of F10 were stable and concentrated in viral factories, only the wild-type protein complemented the assembly and replication defects of vF10V5i in the absence of inducer. These studies provide evidence for an essential catalytic role of the F10 kinase in vaccinia virus morphogenesis.


1993 ◽  
Vol 295 (2) ◽  
pp. 485-491 ◽  
Author(s):  
G Zapata ◽  
P P Roller ◽  
J Crowley ◽  
W F Vann

N-Acetylneuraminic acid cytidyltransferase (CMP-NeuAc synthase) of Escherichia coli K1 is sensitive to mercurials and has cysteine residues only at positions 129 and 329. The role of these residues in the catalytic activity and structure of the protein has been investigated by site-directed mutagenesis and chemical modification. The enzyme is inactivated by the thiol-specific reagent dithiodipyridine. Inactivation by this reagent is decreased in the presence of the nucleotide substrate CTP, suggesting that a thiol residue is at or near the active site. Site-directed mutagenesis of either residue Cys-129 to serine or Cys-329 to selected amino acids has minor effects on the specific activity of the enzyme, suggesting that cysteine is not essential for catalysis and that a disulphide bond is not an essential structural component. The limited reactivity of the enzyme to other thiol-blocking reagents suggests that its cysteine residues are partially exposed. The accessibility and role of the cysteine residues in enzyme structure were investigated by fluorescence, c.d. and denaturation studies of wild-type and mutant enzymes. The mutation of Cys-129 to serine makes the enzyme more sensitive to heat and chemical denaturation, but does not cause gross changes in the protein structure as judged by the c.d. spectrum. The mutant containing Ser-129 instead of Cys-129 had a complex denaturation pathway similar to that of wild-type E. coli K1 CMP-NeuAc synthase consisting of several partially denatured states. Cys-329 reacts more readily with N-[14C]ethylmaleimide when the enzyme is in a heat-induced relaxed state. Cys-129 is less reactive and is probably a buried residue.


2016 ◽  
Vol 60 (5) ◽  
pp. 3123-3126 ◽  
Author(s):  
Carlo Bottoni ◽  
Mariagrazia Perilli ◽  
Francesca Marcoccia ◽  
Alessandra Piccirilli ◽  
Cristina Pellegrini ◽  
...  

ABSTRACTSite-directed mutagenesis of CphA indicated that prolines in the P158-P172 loop are essential for the stability and the catalytic activity of subclass B2 metallo-β-lactamases against carbapenems. The sequential substitution of proline led to a decrease of the catalytic efficiency of the variant compared to the wild-type (WT) enzyme but also to a higher affinity for the binding of the second zinc ion.


2000 ◽  
Vol 350 (3) ◽  
pp. 677-683 ◽  
Author(s):  
Ana M. PAJOR ◽  
Esther S. KAHN ◽  
Rama GANGULA

The role of cationic amino acids in the Na+/dicarboxylate co-transporter NaDC-1 was investigated by site-directed mutagenesis and subsequent expression of mutant transporters in Xenopus oocytes. Of the ten residues chosen for mutagenesis, eight (Lys-34, Lys-107, Arg-108, Lys-333, Lys-390, Arg-368, Lys-414 and Arg-541) were found to be non-essential for function or targeting. Only two conserved residues, Lys-84 (at the cytoplasmic end of helix 3) and Arg-349 (at the extracellular end of helix 7), were found to be important for transport. Both mutant transporters were expressed at the plasma membrane. The mutation of Lys-84 to Ala resulted in an increased Km for succinate of 1.8mM, compared with 0.3mM in the wild-type NaDC-1. The R349A mutant had Na+ and citrate kinetics that were similar to those of the wild type. However, succinate handling in the R349A mutant was altered, with evidence of inhibition at high succinate concentrations. In conclusion, charge neutralization of Lys-84 and Arg-349 in NaDC-1 affects succinate handling, suggesting that these residues might have roles in substrate binding.


1995 ◽  
Vol 309 (1) ◽  
pp. 341-346 ◽  
Author(s):  
M H Rider ◽  
K M Crepin ◽  
M De Cloedt ◽  
L Bertrand ◽  
D Vertommen ◽  
...  

The roles of Arg-104 and Arg-225 located in the 2-kinase domain of the bifunctional enzyme 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) have been studied by site-directed mutagenesis. In recombinant rat liver PFK-2/FBPase-2, mutation of Arg-225 to Ser increased the Km of PFK-2 for fructose-6-phosphate (Fru-6-P) 7-fold at pH 6 and decreased PFK-2 activity at suboptimal substrate concentrations between pH 6 and 9.5. The mutation had no effect on the Vmax of PFK-2 or on the Km of PFK-2 for MgATP. The mutation also increased the Vmax. of FBPase-2 4-fold without changing the Km for Fru-2,6-P2 or IC50 of Fru-6-P. These findings are in agreement with a previous study [Rider and Hue (1992) Eur. J. Biochem. 207, 967-972] on the protection by Fru-6-P of the labelling of Arg-225 by phenylglyoxal, and suggest that Arg-225 participates in Fru-6-P binding. In recombinant rat muscle PFK-2/FBPase-2, mutation of Arg-104 to Ser increased the Km for Fru-6-P 60-fold, increased the IC50 of citrate, increased the Vmax. 1.5-3-fold at pH 8.5 and altered the pH profile of PFK-2 activity. It did not affect the Km of PFK-2 for MgATP. The mutation also decreased the Vmax. of FBPase-2 3-fold, increased the Km for Fru-2,6-P2 70-fold and increased the IC50 of Fru-6-P at least 300-fold. Although the dimeric structure was maintained in the mutant, its PFK-2 activity was more sensitive towards inactivation by guanidinium chloride than the wild-type enzyme activity. The findings indicate that Arg-104 is involved in Fru-6-P binding in the PFK-2 domain and that it might also bind citrate. Structural changes resulting from the mutation might be responsible for the changes in kinetic properties of FBPase-2.


1996 ◽  
Vol 40 (9) ◽  
pp. 1983-1987 ◽  
Author(s):  
Y Q Zhu ◽  
K M Remington ◽  
T W North

We selected mutants of feline immunodeficiency virus (FIV) that are resistant to 2',3'-dideoxy-2',3'-didehydrothymidine (d4T). Two mutants were selected in cultured cells with a stepwise increase in d4T concentration, resulting in mutants able to replicate in 100 microM d4T. These mutants were three- to sixfold more resistant to d4T than wild-type FIV. They were also cross-resistant to 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and 9-(2-phosphonylmethoxyethyl)adenine, and they were highly resistant to phosphonoformic acid (PFA). Plaque-purified mutants were isolated from each of the mutant populations. The mutant phenotype was stable, because both of the plaque-purified mutants remained d4T resistant even after three passages in the absence of d4T. One of the plaque-purified mutants, designated D4R-3c, was further characterized. Compared with wild-type reverse transcriptase (RT), RT purified from D4R-3c was 3-fold resistant to inhibition by the 5'-triphosphate of d4T, 10-fold resistant to inhibition by the 5'-triphosphate of AZT, and 6-fold resistant to PFA. D4R-3c had a single point mutation in the RT-encoding region of the pol gene at position 2474, resulting in a Val to Ile mutation at codon 47 of the FIV RT. The role of this mutation in d4T resistance was confirmed by site-directed mutagenesis.


2003 ◽  
Vol 372 (2) ◽  
pp. 329-334 ◽  
Author(s):  
Teijo PELLINEN ◽  
Helena AHLFORS ◽  
Nicolas BLOT ◽  
Guy CONDEMINE

The Erwinia chrysanthemi oligogalacturonate-specific monomeric porin, KdgM, does not present homology with any porins of known structure. A model of this protein, based on sequence similarity and the amphipathy profile, was constructed. The model depicts a β-barrel composed of 14 antiparallel β-strands. The accuracy of this model was tested by the chemical labelling of cysteine residues introduced by site-directed mutagenesis. The protein has seven surface-exposed loops. They are rather small with the exception of one, loop L6. Deletion of this loop allowed the entry of maltopentaose into the bacteria, a molecule too large to enter through the wild-type KdgM. Loop L6 could fold back into the lumen of the pore and play the role of the constriction loop L3 of general porins. With 14 transmembrane segments, the KdgM porin family could represent the smallest porin characterized to date.


Sign in / Sign up

Export Citation Format

Share Document