scholarly journals Transport via the regulated secretory pathway in semi-intact PC12 cells: role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II.

1994 ◽  
Vol 127 (3) ◽  
pp. 693-705 ◽  
Author(s):  
L Carnell ◽  
H P Moore

To gain insight into the mechanisms governing protein sorting, we have developed a system that reconstitutes both the formation of immature secretory granules and their fusion with the plasma membrane. Semi-intact PC12 cells were incubated with ATP and cytosol for 15 min to allow immature granules to form, and then in a buffer containing 30 microM [Ca2+]free to induce exocytosis. Transport via the regulated pathway, as assayed by the release of secretogranin II (SgII) labeled in the TGN, was inhibited by depletion of ATP, or by the inclusion of 100 microM GTP gamma S, 50 microM AlF3-5 or 5 micrograms/ml BFA. When added after immature granules had formed, GTP gamma S stimulated rather than inhibited exocytosis. Thus, exocytosis of immature granules in this system resembles the characteristics of fully matured granules. Transport of SgII via the regulated pathway occurred at a fourfold higher efficiency than glycosaminoglycan chains, indicating that SgII is sorted to some extent upon exit from the TGN. Addition of A23187 to release Ca2+ from the TGN had no significant effect on sorting of SgII into immature granules. In contrast, depletion of lumenal calcium inhibited the endoproteolytic cleavage of POMC and proinsulin. These results establish the importance of intra-cisternal Ca2+ in prohormone processing, but raise the question whether lumenal calcium is required for proper sorting of SgII into immature granules. Disruption of organelle pH gradients with an ionophore or a weak base resulted in the inhibition of transport via both the constitutive and the regulated pathways.

1994 ◽  
Vol 124 (1) ◽  
pp. 33-41 ◽  
Author(s):  
SL Milgram ◽  
BA Eipper ◽  
RE Mains

The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.


2000 ◽  
Vol 78 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Roland P Kuiper ◽  
Gerard JM Martens

En route through the secretory pathway of neuroendocrine cells, prohormones pass a series of membrane-bounded compartments. During this transport, the prohormones are sorted to secretory granules and proteolytically cleaved to bioactive peptides. Recently, progress has been made in a number of aspects concerning secretory protein transport and sorting, particularly with respect to transport events in the early regions of the secretory pathway. In this review we will deal with some of these aspects, including: i) selective exit from the endoplasmic reticulum via COPII-coated vesicles and the potential role of p24 putative cargo receptors in this process, ii) cisternal maturation as an alternative model for protein transport through the Golgi complex, and iii) the mechanisms that may be involved in the sorting of regulated secretory proteins to secretory granules. Although much remains to be learned, interesting new insights into the functioning of the secretory pathway have been obtained.Key words: regulated secretory pathway, p24 family, vesicular transport, POMC, protein sorting, secretory granule, Xenopus laevis.


2000 ◽  
Vol 11 (6) ◽  
pp. 1959-1972 ◽  
Author(s):  
Regina Kuliawat ◽  
Daniel Prabakaran ◽  
Peter Arvan

Recently, two different prohormone-processing enzymes, prohormone convertase 1 (PC1) and carboxypeptidase E, have been implicated in enhancing the storage of peptide hormones in endocrine secretory granules. It is important to know the extent to which such molecules may act as “sorting receptors” to allow the selective trafficking of cargo proteins from the trans-Golgi network into forming granules, versus acting as enzymes that may indirectly facilitate intraluminal storage of processed hormones within maturing granules. GH4C1 cells primarily store prolactin in granules; they lack PC1 and are defective for intragranular storage of transfected proinsulin. However, proinsulin readily enters the immature granules of these cells. Interestingly, GH4C1 clones that stably express modest levels of PC1 store more proinsulin-derived protein in granules. Even in the presence of PC1, a sizable portion of the proinsulin that enters granules goes unprocessed, and this portion largely escapes granule storage. Indeed, all of the increased granule storage can be accounted for by the modest portion converted to insulin. These results are not unique to GH4C1 cells; similar results are obtained upon PC1 expression in PC12 cells as well as in AtT20 cells (in which PC1 is expressed endogenously at higher levels). An in vitro assay of protein solubility indicates a difference in the biophysical behavior of proinsulin and insulin in the PC1 transfectants. We conclude that processing to insulin, facilitated by the catalytic activities of granule proteolytic enzymes, assists in the targeting (storage) of the hormone.


Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 227-237 ◽  
Author(s):  
Lowell Y M Rayburn ◽  
Holly C Gooding ◽  
Semil P Choksi ◽  
Dhea Maloney ◽  
Ambrose R Kidd ◽  
...  

Abstract Biosynthesis of most peptide hormones and neuropeptides requires proteolytic excision of the active peptide from inactive proprotein precursors, an activity carried out by subtilisin-like proprotein convertases (SPCs) in constitutive or regulated secretory pathways. The Drosophila amontillado (amon) gene encodes a homolog of the mammalian PC2 protein, an SPC that functions in the regulated secretory pathway in neuroendocrine tissues. We have identified amon mutants by isolating ethylmethanesulfonate (EMS)-induced lethal and visible mutations that define two complementation groups in the amon interval at 97D1 of the third chromosome. DNA sequencing identified the amon complementation group and the DNA sequence change for each of the nine amon alleles isolated. amon mutants display partial embryonic lethality, are defective in larval growth, and arrest during the first to second instar larval molt. Mutant larvae can be rescued by heat-shock-induced expression of the amon protein. Rescued larvae arrest at the subsequent larval molt, suggesting that amon is also required for the second to third instar larval molt. Our data indicate that the amon proprotein convertase is required during embryogenesis and larval development in Drosophila and support the hypothesis that AMON acts to proteolytically process peptide hormones that regulate hatching, larval growth, and larval ecdysis.


1997 ◽  
Vol 138 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Anna M. Castle ◽  
Amy Y. Huang ◽  
J. David Castle

Previous studies have suggested that salivary amylase and proline-rich protein are sorted differently when expressed in AtT-20 cells (Castle, A.M., L.E. Stahl, and J.D. Castle. 1992. J. Biol. Chem. 267:13093– 13100; Colomer, V., K. Lal, T.C. Hoops, and M.J. Rindler. 1994.EMBO (Eur. Mol. Biol. Organ.) J. 13:3711– 3719). We now show that both exocrine proteins behave similarly and enter the regulated secretory pathway as judged by immunolocalization and secretagogue- dependent stimulation of secretion. Analysis of stimulated secretion of newly synthesized proline-rich protein, amylase, and endogenous hormones indicates that the exogenous proteins enter the granule pool with about the same efficiency as the endogenous hormones. However, in contrast to the endogenous hormones, proline-rich protein and amylase are progressively removed from the granule pool during the process of granule maturation such that only small portions remain in mature granules where they colocalize with the stored hormones. The exogenous proteins that are not stored are recovered from the incubation medium and are presumed to have undergone constitutive-like secretion. These results point to a level of sorting for regulated secretion after entry of proteins into forming granules and indicate that retention is essential for efficient storage. Consequently, the critical role of putative sorting receptors for regulated secretion may be in retention rather than in granule entry.


1998 ◽  
Vol 332 (3) ◽  
pp. 593-610 ◽  
Author(s):  
Peter ARVAN ◽  
David CASTLE

Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.


2018 ◽  
Author(s):  
Brennan S. Dirk ◽  
Christopher End ◽  
Emily N. Pawlak ◽  
Logan R. Van Nynatten ◽  
Rajesh Abraham Jacob ◽  
...  

ABSTRACTThe regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein – 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.


2006 ◽  
Vol 400 (1-2) ◽  
pp. 75-79 ◽  
Author(s):  
Jens Carsten Möller ◽  
Alex Krüttgen ◽  
Rosi Burmester ◽  
Joachim Weis ◽  
Wolfgang H. Oertel ◽  
...  

1987 ◽  
Vol 105 (2) ◽  
pp. 659-668 ◽  
Author(s):  
T L Burgess ◽  
C S Craik ◽  
L Matsuuchi ◽  
R B Kelly

The mouse anterior pituitary tumor cell line, AtT-20, targets secretory proteins into two distinct intracellular pathways. When the DNA that encodes trypsinogen is introduced into AtT-20 cells, the protein is sorted into the regulated secretory pathway as efficiently as the endogenous peptide hormone ACTH. In this study we have used double-label immunoelectron microscopy to demonstrate that trypsinogen colocalizes in the same secretory granules as ACTH. In vitro mutagenesis was used to test whether the information for targeting trypsinogen to the secretory granules resides at the amino (NH2) terminus of the protein. Mutations were made in the DNA that encodes trypsinogen, and the mutant proteins were expressed in AtT-20 cells to determine whether intracellular targeting could be altered. Replacing the trypsinogen signal peptide with that of the kappa-immunoglobulin light chain, a constitutively secreted protein, does not alter targeting to the regulated secretory pathway. In addition, deletion of the NH2-terminal "pro" sequence of trypsinogen has virtually no effect on protein targeting. However, this deletion does affect the signal peptidase cleavage site, and as a result the enzymatic activity of the truncated trypsin protein is abolished. We conclude that neither the signal peptide nor the 12 NH2-terminal amino acids of trypsinogen are essential for sorting to the regulated secretory pathway of AtT-20 cells.


2001 ◽  
Vol 360 (3) ◽  
pp. 645-649 ◽  
Author(s):  
Renu K. JAIN ◽  
Paul B. M. JOYCE ◽  
Miguel MOLINETE ◽  
Philippe A. HALBAN ◽  
Sven-Ulrik GORR

Green fluorescent protein (GFP) is used extensively as a reporter protein to monitor cellular processes, including intracellular protein trafficking and secretion. In general, this approach depends on GFP acting as a passive reporter protein. However, it was recently noted that GFP oligomerizes in the secretory pathway of endocrine cells. To characterize this oligomerization and its potential role in GFP transport, cytosolic and secretory forms of enhanced GFP (EGFP) were expressed in GH4C1 and AtT-20 endocrine cells. Biochemical analysis showed that cytosolic EGFP existed as a 27kDa monomer, whereas secretory forms of EGFP formed disulphide-linked oligomers. EGFP contains two cysteine residues (Cys49 and Cys71), which could play a role in this oligomerization. Site-directed mutagenesis of Cys49 and Cys71 showed that both cysteine residues were involved in disulphide interactions. Substitution of either cysteine residue resulted in a reduction or loss of oligomers, although dimers of the secretory form of EGFP remained. Mutation of these residues did not adversely affect the fluorescence of EGFP. EGFP oligomers were stored in secretory granules and secreted by the regulated secretory pathway in endocrine AtT-20 cells. Similarly, the dimeric mutant forms of EGFP were still secreted via the regulated secretory pathway, indicating that the higher-order oligomers were not necessary for sorting in AtT-20 cells. These results suggest that the oligomerization of EGFP must be considered when the protein is used as a reporter molecule in the secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document