scholarly journals Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro.

1995 ◽  
Vol 128 (1) ◽  
pp. 107-115 ◽  
Author(s):  
V A Lombillo ◽  
C Nislow ◽  
T J Yen ◽  
V I Gelfand ◽  
J R McIntosh

Chromosomes can move with the ends of depolymerizing microtubules (MTs) in vitro, even in the absence of nucleotide triphosphates (Coue, M., V. A. Lombillo, and J. R. McIntosh. 1991. J. Cell Biol. 112:1165-1175.) Here, we describe an immunological investigation of the proteins important for this form of motility. Affinity-purified polyclonal antibodies to kinesin exert a severe inhibitory effect on depolymerization-dependent chromosome motion. These antibodies predominantly recognize a polypeptide of M(r) approximately 250 kD on immunoblots of CHO chromosomes and stain kinetochores as well as some vesicles that are in the chromosome preparation. Antibodies to CENP-E, a kinetochore-associated kinesin-like protein, also recognize a 250-kD electrophoretic component, but they stain only the kinetochroe region of isolated chromosomes. Polyclonal antibodies that recognize specific domains of the CENP-E polypeptide affect MT disassembly-dependent chromosome motion in different ways; antibodies to the head or tail portions slow motility threefold, while those raised against the neck region stop motion completely. Analogous antibodies that block conventional, ATP-dependent motility of cytoplasmic dynein (Vaisberg, G., M. P. Koonce, and J. R. McIntosh. 1993. J. Cell Biol. 123:849-858) have no effect on disassembly-dependent chromosome motion, even though they bind to kinetochores. These observations suggest that CENP-E helps couple chromosomes to depolymerizing MTs. A similar coupling activity may allow spindle MTs to remain kinetochore-bound while their lengths change during both prometaphase and anaphase A.

1988 ◽  
Vol 107 (2) ◽  
pp. 635-641 ◽  
Author(s):  
J L Salisbury ◽  
A T Baron ◽  
M A Sanders

Monoclonal and polyclonal antibodies raised against algal centrin, a protein of algal striated flagellar roots, were used to characterize the occurrence and distribution of this protein in interphase and mitotic Chlamydomonas cells. Chlamydomonas centrin, as identified by Western immunoblot procedures, is a low molecular (20,000-Mr) acidic protein. Immunofluorescence and immunogold labeling demonstrates that centrin is a component of the distal fiber. In addition, centrin-based flagellar roots link the flagellar apparatus to the nucleus. Two major descending fibers extend from the basal bodies toward the nucleus; each descending fiber branches several times giving rise to 8-16 fimbria which surround and embrace the nucleus. Immunogold labeling indicates that these fimbria are juxtaposed to the outer nuclear envelope. Earlier studies have demonstrated that the centrin-based linkage between the flagellar apparatus and the nucleus is contractile, both in vitro and in living Chlamydomonas cells (Wright, R. L., J. Salisbury, and J. Jarvik. 1985. J. Cell Biol. 101:1903-1912; Salisbury, J. L., M. A. Sanders, and L. Harpst. 1987. J. Cell Biol. 105:1799-1805). Immunofluorescence studies show dramatic changes in distribution of the centrin-based system during mitosis that include a transient contraction at preprophase; division, separation, and re-extension during prophase; and a second transient contraction at the metaphase/anaphase boundary. These observations suggest a fundamental role for centrin in motile events during mitosis.


1990 ◽  
Vol 111 (2) ◽  
pp. 581-588 ◽  
Author(s):  
A Cartaud ◽  
M A Ludosky ◽  
J C Courvalin ◽  
J Cartaud

Desmosomes are specialized domains of epithelial cell plasma membranes engaged in the anchoring of intermediate filaments (IF). So far, the desmosomal component(s) responsible for this binding has not been unambiguously identified. In the present work, we have examined bovine muzzle epidermis desmosomes for the presence of protein(s) structurally and functionally related to lamin B, the major receptor for IF in the nuclear envelope (Georgatos, S. D., and G. Blobel. 1987. J. Cell Biol. 105:105-115). By using polyclonal antibodies to lamin B in immunoblotting experiments, we find that a desmosomal protein of 140-kD shares epitope(s) with lamin B. Immunoelectron microscopic and urea extraction experiments show that this protein is a peripheral protein localized at the cytoplasmic side of the desmosomes (desmosomal plaques). Furthermore, this protein binds vimentin in an in vitro assay. Since this binding is inhibited by lamin B antibodies, the epitopes common to the 140-kD protein and to lamin B may be responsible for anchoring of intermediate filaments to desmosomes. These data suggest that lamin B-related proteins (see also Cartaud, A., J. C. Courvalin, M. A. Ludosky, and J. Cartaud. 1989. J. Cell Biol. 109:1745-1752) together with lamin B, provide cells with several nucleation sites, which can account for the multiplicity of IF organization in tissues.


2004 ◽  
Vol 91 (04) ◽  
pp. 743-754 ◽  
Author(s):  
Lotta Joutsi-Korhonen ◽  
Sandy Preston ◽  
Peter Smethurst ◽  
Martin IJsseldijk ◽  
Elisabeth Schaffner-Reckinger ◽  
...  

SummaryRecombinant HPA-1a antibodies with Fc, mutated to remove destructive effector functions, have been developed as a potential therapy for fetomaternal alloimmune thrombocytopenia (FMAIT), via blockade of binding of human HPA-1a polyclonal antibodies to fetal HPA-1a1b platelets. We have assessed the effect of the IgG1 HPA-1a antibody B2G1 and two mutated derivatives in various functional assays in resting and agoniststimulated platelets of the three HPA-1 genotypes. With HPA-1a1b platelets (fetal genotype), the antibodies did not activate signalling or CD62P expression in resting platelets, did not change in vitro bleeding time (IVBT), and did not inhibit platelet adhesion to collagen in flowing blood. Adhesion of HPA-1a1b platelets to fibrinogen was reduced by 20%, and aggregation induced by ADP by 50%, but collagen-related peptide (CRP-XL)-induced aggregation was normal. With HPA-1a1a platelets, aggregation to both ADP and CRP-XL was inhibited, with total blockade of adhesion to fibrinogen and of IVBT responses. Interestingly, a monovalent antibody fragment with identical specificity had no inhibitory effect on aggregation. In static adhesion assays using human αIIbβ3 or αVβ3 transfectants of HPA-1a (Leu33) phenotype, attachment to fibrinogen of the latter but not of the former was completely blocked by the HPA-1a antibodies. These observations are best explained by antibody-mediated blockade of the RGD binding site on β3 by a mechanism of steric hindrance. As the effect on platelet function is modest with HPA-1a1b (fetal type) platelets, the mutated HPA-1a antibodies described here could be developed further for FMAIT therapy.


1999 ◽  
Vol 112 (9) ◽  
pp. 1291-1302 ◽  
Author(s):  
R.E. Palazzo ◽  
E.A. Vaisberg ◽  
D.G. Weiss ◽  
S.A. Kuznetsov ◽  
W. Steffen

Meiosis I spindle assembly is induced in lysate-extract mixtures prepared from clam (Spisula solidissima) oocytes. Unactivated lysate prepared from unactivated oocytes contain nuclei (germinal vesicles, GVs) which house condensed chromosomes. Treatment of unactivated lysate with clarified activated extract prepared from oocytes induced to complete meiosis by treatment with KCl induces GV breakdown (GVBD) and assembly of monopolar, bipolar, and multipolar aster-chromosome complexes. The process of in vitro meiosis I spindle assembly involves the assembly of microtubule asters and the association of these asters with the surfaces of the GVs, followed by GVBD and spindle assembly. Monoclonal antibody m74-1, known to react specifically with the N terminus of the intermediate chain of cytoplasmic dynein, recognizes Spisula oocyte dynein and inhibits in vitro meiosis I spindle assembly. Control antibody has no affect on spindle assembly. A similar inhibitory effect on spindle assembly was observed in the presence of orthovanadate, a known inhibitor of dynein ATPase activity. Neither m74-1 nor orthovanadate has any obvious affect on GVBD or aster formation. We propose that dynein function is required for the association of chromosomes with astral microtubules during in vitro meiosis I spindle assembly in these lysate-extract mixtures. However, we conclude that dynein function is not required for centrosome assembly and maturation or for centrosome-dependent aster formation.


Parasitology ◽  
1999 ◽  
Vol 118 (5) ◽  
pp. 489-498 ◽  
Author(s):  
F. HUBY ◽  
S. MALLET ◽  
H. HOSTE

The excretory–secretory (E–S) products of the parasitic nematodes Trichostrongylus colubriformis and Nematodirus battus were found to modify the in vitro proliferation of the tumorous colic HT29-D4 cell line of epithelial origin. A characteristic feature of these E–S products is the presence of a high level of acetylcholinesterase (AChE) activity, the biological significance of which remains unclear. To determine a possible role of AChE on cell growth, the enzyme was purified from E–S products using edrophonium chloride. Purity was confirmed by polyacrylamide gel electrophoresis, using silver and Karnovsky stains, before assessing its effects on cell proliferation. The purified AChE was incorporated at different concentrations in a culture medium of HT29-D4 cells. A mitogenic effect was shown for low concentrations (0·1–14 units). By contrast, an inhibitory effect was noted at high concentrations (35–1400 units). Furthermore, polyclonal antibodies were prepared and depletion of AChE in E–S products by immunoprecipitation or affinity chromatography resulted in a partial or total disappearance of the stimulatory effect of cell growth. Thus, the results from this in vitro study suggest a modulatory role for AChE secreted by nematode parasites on the proliferation of epithelial cells of the host.


2017 ◽  
Author(s):  
Brigette Y. Monroy ◽  
Danielle L. Sawyer ◽  
Bryce E. Ackermann ◽  
Melissa M. Borden ◽  
Tracy C. Tan ◽  
...  

Within cells, numerous motor and non-motor microtubule-associated proteins (MAPs) simultaneously converge on the microtubule lattice. How the binding activities of non-motor MAPs are coordinated and how they contribute to the balance and distribution of microtubule motor transport is unknown. Here, we examine the relationship between MAP7 and tau due to their antagonistic effects on neuronal branch formation and kinesin motility in vivo1–8. We find that MAP7 and tau compete for binding to microtubules, and determine a mechanism by which MAP7 displaces tau from the lattice. In striking contrast to the inhibitory effect of tau, MAP7 promotes kinesin-based transport in vivo and strongly enhances kinesin-1 binding to the microtubule in vitro, providing evidence for direct enhancement of motor motility by a MAP. In contrast, both MAP7 and tau strongly inhibit kinesin-3 and have no effect on cytoplasmic dynein, demonstrating that MAPs exhibit differential control over distinct classes of motors. Overall, these results reveal a general principle for how MAP competition dictates access to the microtubule to determine the correct distribution and balance of molecular motor activity.


1987 ◽  
Vol 58 (02) ◽  
pp. 744-748 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
J C Barbenel ◽  
C D Forbes

SummarySpontaneous platelet aggregation (SPA) was studied in human whole blood at 3, 5, 10, 20, 30, 40 and 60 minutes after venepuncture. Using a whole blood platelet counter, SPA was quantified by measuring the fall in single platelet count upon rollermixing aliquots of citrated blood at 37° C. The extent of SPA increased with the time after venepuncture, with a correlation coefficient of 0.819. The inhibitory effect of dipyridamole (Dipy) on SPA was studied: (a) 10 μM at each time interval; (b) 0.5-100 μM at 3 and 30 minutes and (c) 15 μM in combination with 100 μM adenosine, 8 μM 2-chloroadenosine (2ClAd, an ADP receptor blocker) and 50 μM aspirin. There was a rapid decrease in the inhibitory effect of Dipy with the time after venepuncture; the correlation coefficient was -0.533. At all the concentrations studied, Dipy was more effective at 3 minutes than at 30 minutes after venepuncture. A combination of Dipy with adenosine, 2ClAd or aspirin was a more effective inhibitor of SPA than either drug alone. However, when 15 μM Dipy and 10 μM Ad were added together, the inhibitory effect of Dipy was not increased significantly, suggesting that Dipy inhibits platelet aggregation independent of Ad. The increase in SPA with the time after venepuncture was abolished when blood was taken directly into the anticoagulant containing 5 μM 2ClAd. It is suggested that ADP released from the red blood cells is responsible for the increased platelet aggregability with the time after venepuncture and makes a serious contribution to the artifacts of in vitro platelet function studies.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


Sign in / Sign up

Export Citation Format

Share Document