scholarly journals Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy.

1995 ◽  
Vol 128 (5) ◽  
pp. 905-912 ◽  
Author(s):  
P E Ceccaldi ◽  
F Grohovaz ◽  
F Benfenati ◽  
E Chieregatti ◽  
P Greengard ◽  
...  

Synapsin I is a synaptic vesicle-associated protein which inhibits neurotransmitter release, an effect which is abolished upon its phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Based on indirect evidence, it was suggested that this effect on neurotransmitter release may be achieved by the reversible anchoring of synaptic vesicles to the actin cytoskeleton of the nerve terminal. Using video-enhanced microscopy, we have now obtained experimental evidence in support of this model: the presence of dephosphorylated synapsin I is necessary for synaptic vesicles to bind actin; synapsin I is able to promote actin polymerization and bundling of actin filaments in the presence of synaptic vesicles; the ability to cross-link synaptic vesicles and actin is specific for synapsin I and is not shared by other basic proteins; the cross-linking between synaptic vesicles and actin is specific for the membrane of synaptic vesicles and does not reflect either a non-specific binding of membranes to the highly surface active synapsin I molecule or trapping of vesicles within the thick bundles of actin filaments; the formation of the ternary complex is virtually abolished when synapsin I is phosphorylated by CaM kinase II. The data indicate that synapsin I markedly affects synaptic vesicle traffic and cytoskeleton assembly in the nerve terminal and provide a molecular basis for the ability of synapsin I to regulate the availability of synaptic vesicles for exocytosis and thereby the efficiency of neurotransmitter release.

1999 ◽  
Vol 147 (6) ◽  
pp. 1249-1260 ◽  
Author(s):  
Elaine A. Neale ◽  
Linda M. Bowers ◽  
Min Jia ◽  
Karen E. Bateman ◽  
Lura C. Williamson

The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K+-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K+ depolarization, in the presence of Ca2+, triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A–blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca2+ is required for synaptic vesicle membrane retrieval.


Physiology ◽  
1995 ◽  
Vol 10 (1) ◽  
pp. 42-46
Author(s):  
G Thiel

Synaptic vesicles play a fundamental role in brain function by mediating the release of neurotransmitters. Neurons do not use an entirely unique secretion apparatus but rather a modification of the general secretion machinery. Moreover, the synaptic vesicle cycle has many similarities with intracellular vesicle trafficking pathways.


Author(s):  
Peggy Mason

The biochemical and physiological processes of neurotransmitter release from an active zone, a specialized region of synaptic membrane, are examined. Synaptic vesicles containing neurotransmitters are docked at the active zone and then primed for release by SNARE complexes that bring them into extreme proximity to the plasma membrane. Entry of calcium ions through voltage-gated calcium channels triggers synaptic vesicle fusion with the synaptic terminal membrane and the consequent diffusion of neurotransmitter into the synaptic cleft. Release results when the fusion pore bridging the synaptic vesicle and plasma membrane widens and neurotransmitter from the inside of the synaptic vesicle diffuses into the synaptic cleft. Membrane from the active zone membrane is endocytosed, and synaptic vesicle proteins are then reassembled into recycled synaptic vesicles, allowing for more rounds of neurotransmitter release.


2014 ◽  
Vol 205 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Stefano Vavassori ◽  
Andreas Mayer

Neurons fire by releasing neurotransmitters via fusion of synaptic vesicles with the plasma membrane. Fusion can be evoked by an incoming signal from a preceding neuron or can occur spontaneously. Synaptic vesicle fusion requires the formation of trans complexes between SNAREs as well as Ca2+ ions. Wang et al. (2014. J. Cell Biol. http://dx.doi.org/jcb.201312109) now find that the Ca2+-binding protein Calmodulin promotes spontaneous release and SNARE complex formation via its interaction with the V0 sector of the V-ATPase.


1993 ◽  
Vol 123 (6) ◽  
pp. 1845-1855 ◽  
Author(s):  
F Benfenati ◽  
F Valtorta ◽  
M C Rossi ◽  
F Onofri ◽  
T Sihra ◽  
...  

Synapsin I is a synaptic vesicle-specific phosphoprotein composed of a globular and hydrophobic head and of a proline-rich, elongated and basic tail. Synapsin I binds with high affinity to phospholipid and protein components of synaptic vesicles. The head region of the protein has a very high surface activity, strongly interacts with acidic phospholipids and penetrates the hydrophobic core of the vesicle membrane. In the present paper, we have investigated the possible functional effects of the interaction between synapsin I and vesicle phospholipids. Synapsin I enhances both the rate and the extent of Ca(2+)-dependent membrane fusion, although it has no detectable fusogenic activity per se. This effect, which appears to be independent of synapsin I phosphorylation and localized to the head region of the protein, is attributable to aggregation of adjacent vesicles. The facilitation of Ca(2+)-induced liposome fusion is maximal at 50-80% of vesicle saturation and then decreases steeply, whereas vesicle aggregation does not show this biphasic behavior. Association of synapsin I with phospholipid bilayers does not induce membrane destabilization. Rather, 31P-nuclear magnetic resonance spectroscopy demonstrated that synapsin I inhibits the transition of membrane phospholipids from the bilayer (L alpha) to the inverted hexagonal (HII) phase induced either by increases in temperature or by Ca2+. These properties might contribute to the remarkable selectivity of the fusion of synaptic vesicles with the presynaptic plasma membrane during exocytosis.


2001 ◽  
Vol 354 (1) ◽  
pp. 57-66 ◽  
Author(s):  
James J. CHEETHAM ◽  
Sabine HILFIKER ◽  
Fabio BENFENATI ◽  
Thomas WEBER ◽  
Paul GREENGARD ◽  
...  

The synapsins constitute a family of synaptic vesicle-associated phosphoproteins essential for regulating neurotransmitter release and synaptogenesis. The molecular mechanisms underlying the selective targeting of synapsin I to synaptic vesicles are thought to involve specific protein–protein interactions, while the high-affinity binding to the synaptic vesicle membrane may involve both protein–protein and protein–lipid interactions. The highly hydrophobic N-terminal region of the protein has been shown to bind with high affinity to the acidic phospholipids phosphatidylserine and phosphatidylinositol and to penetrate the hydrophobic core of the lipid bilayer. To precisely identify the domains of synapsin I which mediate the interaction with lipids, synapsin I was bound to liposomes containing the membrane-directed carbene-generating reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and subjected to photolysis. Isolation and N-terminal amino acid sequencing of 125I-labelled synapsin I peptides derived from CNBr cleavage indicated that three distinct regions in the highly conserved domain C of synapsin I insert into the hydrophobic core of the phospholipid bilayer. The boundaries of the regions encompass residues 166–192, 233–258 and 278–327 of bovine synapsin I. These regions are surface-exposed in the crystal structure of domain C of bovine synapsin I and are evolutionarily conserved among isoforms across species. The present data offer a molecular explanation for the high-affinity binding of synapsin I to phospholipid bilayers and synaptic vesicles.


2010 ◽  
Vol 188 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Rubén Fernández-Busnadiego ◽  
Benoît Zuber ◽  
Ulrike Elisabeth Maurer ◽  
Marek Cyrklaff ◽  
Wolfgang Baumeister ◽  
...  

The presynaptic terminal contains a complex network of filaments whose precise organization and functions are not yet understood. The cryoelectron tomography experiments reported in this study indicate that these structures play a prominent role in synaptic vesicle release. Docked synaptic vesicles did not make membrane to membrane contact with the active zone but were instead linked to it by tethers of different length. Our observations are consistent with an exocytosis model in which vesicles are first anchored by long (>5 nm) tethers that give way to multiple short tethers once vesicles enter the readily releasable pool. The formation of short tethers was inhibited by tetanus toxin, indicating that it depends on soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor complex assembly. Vesicles were extensively interlinked via a set of connectors that underwent profound rearrangements upon synaptic stimulation and okadaic acid treatment, suggesting a role of these connectors in synaptic vesicle mobilization and neurotransmitter release.


Sign in / Sign up

Export Citation Format

Share Document