scholarly journals Actin filaments in yeast are unstable in the absence of capping protein or fimbrin.

1995 ◽  
Vol 131 (6) ◽  
pp. 1483-1493 ◽  
Author(s):  
T S Karpova ◽  
K Tatchell ◽  
J A Cooper

Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.

2002 ◽  
Vol 115 (5) ◽  
pp. 881-886 ◽  
Author(s):  
Sandra Palmgren ◽  
Maria Vartiainen ◽  
Pekka Lappalainen

Twinfilin is a ubiquitous actin-monomer-binding protein that is composed of two ADF-homology domains. It forms a 1:1 complex with ADP-actin-monomers,inhibits nucleotide exchange on actin monomers and prevents assembly of the monomer into filaments. The two ADF-H domains in twinfilin probably have 3D structures similar to those of the ADF/cofilin proteins and overlapping actin-binding sites. Twinfilin also interacts with PtdIns(4,5)P2, which inhibits its actin-monomer-sequestering activity in vitro. Mutations in the twinfilin gene result in defects in the bipolar budding pattern in S. cerevisiae and in a rough eye phenotype and aberrant bristle morphology in Drosophila melanogaster. These phenotypes are caused by the uncontrolled polymerization of actin filaments in the absence of twinfilin. Studies on budding yeast suggest that twinfilin contributes to actin filament turnover by localizing actin monomers, in their `inactive'ADP-form, to the sites of rapid filament assembly. This is mediated through direct interactions between twinfilin and capping protein. Therefore,twinfilin might serve as a link between rapid actin filament depolymerization and assembly in cells.


1996 ◽  
Vol 133 (6) ◽  
pp. 1293-1305 ◽  
Author(s):  
R Hopmann ◽  
J A Cooper ◽  
K G Miller

Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and preventing the addition or loss of actin monomers. To examine the in vivo role of CP, we have performed a molecular and genetic characterization of the beta subunit of capping protein from Drosophila melanogaster. We have identified mutations in the Drosophila beta subunit-these are the first CP mutations in a multicellular organism, and unlike CP mutations in yeast, they are lethal, causing death during the early larval stage. Adult files that are heterozygous for a pair of weak alleles have a defect in bristle morphology that is correlated to disorganized actin bundles in developing bristles. Our data demonstrate that CP has an essential function during development, and further suggest that CP is required to regulate actin assembly during the development of specialized structures that depend on actin for their morphology.


2020 ◽  
Author(s):  
Andrew R Harris ◽  
Pamela Jreij ◽  
Brian Belardi ◽  
Andreas Bausch ◽  
Daniel A Fletcher

ABSTRACTThe assembly of actin filaments into distinct cytoskeletal structures plays a critical role in cell physiology, but how proteins localize differentially to these structures within a shared cytoplasm remains unclear. Here, we show that the actin-binding domains of accessory proteins can be sensitive to filament conformational changes. Using a combination of live cell imaging and in vitro single molecule binding measurements, we show that tandem calponin homology domains (CH1-CH2) can be mutated to preferentially bind actin networks at the front or rear of motile cells, and we demonstrate that the affinity of CH1-CH2 domain mutants varies as actin filament conformation is altered by perturbations that include stabilizing drugs, physical constraints, and other binding proteins. These findings suggest that conformational heterogeneity of actin filaments in cells could help to direct accessory binding proteins to different actin cytoskeletal structures through a biophysical feedback loop.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew R. Harris ◽  
Pamela Jreij ◽  
Brian Belardi ◽  
Aaron M. Joffe ◽  
Andreas R. Bausch ◽  
...  

AbstractThe assembly of actin filaments into distinct cytoskeletal structures plays a critical role in cell physiology, but how proteins localize differentially to these structures within a shared cytoplasm remains unclear. Here, we show that the actin-binding domains of accessory proteins can be sensitive to filament conformational changes. Using a combination of live cell imaging and in vitro single molecule binding measurements, we show that tandem calponin homology domains (CH1–CH2) can be mutated to preferentially bind actin networks at the front or rear of motile cells. We demonstrate that the binding kinetics of CH1–CH2 domain mutants varies as actin filament conformation is altered by perturbations that include stabilizing drugs and other binding proteins. These findings suggest that conformational changes of actin filaments in cells could help to direct accessory binding proteins to different actin cytoskeletal structures through a biophysical feedback loop.


2007 ◽  
Vol 18 (8) ◽  
pp. 3002-3014 ◽  
Author(s):  
Faisal Chaudhry ◽  
Christophe Guérin ◽  
Matthias von Witsch ◽  
Laurent Blanchoin ◽  
Christopher J. Staiger

The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP–actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP– and ATP–monomeric actin (Kd ∼ 1.3 μM). Binding of AtCAP1 to ATP–actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of subunits through actin filament barbed ends. Collectively, these results and our understanding of other actin-binding proteins implicate CAP1 as a central player in regulating the pool of unpolymerized ATP–actin.


2019 ◽  
Author(s):  
Sabrina Pospich ◽  
Felipe Merino ◽  
Stefan Raunser

SummaryActin undergoes structural transitions during polymerization, ATP hydrolysis and subsequent release of inorganic phosphate. Several actin binding proteins sense specific states during this transition and can thus target different regions of the actin filament. Here we show in atomic detail that phalloidin, a mushroom toxin that is routinely used to stabilize and label actin filaments, suspends the structural changes in actin, likely influencing its interaction with actin binding proteins. Furthermore, high-resolution cryo-EM structures reveal structural rearrangements in F-actin upon inorganic phosphate release in phalloidin-stabilized filaments. We find that the effect of the sponge toxin jasplakinolide differs from the one of phalloidin, despite their overlapping binding site and similar interactions with the actin filament. Analysis of structural conformations of F-actin suggests that stabilizing agents trap states within the natural conformational space of actin.Abstract FigureHighlightsFive high-resolution cryo-EM structures of stabilized filamentous actinPhalloidin traps different structural states depending on when it is addedThe effect of phalloidin and jasplakinolide on filamentous actin is not identicalBoth toxins likely interfere with the binding of proteins sensing F-actin’s nucleotide state


1996 ◽  
Vol 7 (1) ◽  
pp. 1-15 ◽  
Author(s):  
G I Sizonenko ◽  
T S Karpova ◽  
D J Gattermeir ◽  
J A Cooper

To investigate physiologic functions and structural correlates for actin capping protein (CP), we analyzed site-directed mutations in CAP1 and CAP2, which encode the alpha and beta subunits of CP in Saccharomyces cerevisiae. Mutations in four different regions caused a loss of CP function in vivo despite the presence of mutant protein in the cells. Mutations in three regions caused a complete loss of all aspects of function, including the actin distribution, viability with sac6, and localization of CP to actin cortical patches. Mutation of the fourth region led to partial loss of only one function-formation of actin cables. Some mutations retained function and exhibited the complete wild-type phenotype, and some mutations led to a complete loss of protein and therefore loss of function. The simplest hypothesis that can explain these results is that a single biochemical property is necessary for all in vivo functions. This biochemical property is most likely binding to actin filaments, because the nonfunctional mutant CPs no longer co-localize with actin filaments in vivo and because direct binding of CP to actin filaments has been well established by studies with purified proteins in vitro. More complex hypotheses, involving the existence of additional biochemical properties important for function, cannot be excluded by this analysis.


1993 ◽  
Vol 4 (5) ◽  
pp. 459-468 ◽  
Author(s):  
A E Adams ◽  
J A Cooper ◽  
D G Drubin

To understand the role of the actin cytoskeleton in cell physiology, and how actin-binding proteins regulate the actin cytoskeleton in vivo, we and others previously identified actin-binding proteins in Saccharomyces cerevisiae and studied the effect of null mutations in the genes for these proteins. A null mutation of the actin gene (ACT1) is lethal, but null mutations in the tropomyosin (TPM1), fimbrin (SAC6), Abp1p (ABP1), and capping protein (CAP1 and CAP2) genes have relatively mild or no effects. We have now constructed double and triple mutants lacking 2 or 3 of these actin-binding proteins, and studied the effect of the combined mutations on cell growth, morphology, and organization of the actin cytoskeleton. Double mutants lacking fimbrin and either Abp1p or capping protein show negative synthetic effects on growth, in the most extreme case resulting in lethality. All other combinations of double mutations and the triple mutant lacking tropomyosin, Abp1p, and capping protein, are viable and their phenotypes are similar to or only slightly more severe than those of the single mutants. Therefore, the synthetic phenotypes are highly specific. We confirmed this specificity by overexpression of capping protein and Abp1p in strains lacking fimbrin. Thus, while overexpression of these proteins has deleterious effects on actin organization in wild-type strains, no synthetic phenotype was observed in the absence of fimbrin. We draw two important conclusions from these results. First, since mutations in pairs of actin-binding protein genes cause inviability, the actin cytoskeleton of yeast does not contain a high degree of redundancy. Second, the lack of structural and functional homology among these genetically redundant proteins (fimbrin and capping protein or Abp1p) indicates that they regulate the actin cytoskeleton by different mechanisms. Determination of the molecular basis for this surprising conclusion will provide unique insights into the essential mechanisms that regulate the actin cytoskeleton.


2007 ◽  
Vol 18 (3) ◽  
pp. 827-838 ◽  
Author(s):  
Céline Revenu ◽  
Matthieu Courtois ◽  
Alphée Michelot ◽  
Cécile Sykes ◽  
Daniel Louvard ◽  
...  

Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.


Sign in / Sign up

Export Citation Format

Share Document