scholarly journals Structural effects and functional implications of phalloidin and jasplakinolide binding to actin filaments

2019 ◽  
Author(s):  
Sabrina Pospich ◽  
Felipe Merino ◽  
Stefan Raunser

SummaryActin undergoes structural transitions during polymerization, ATP hydrolysis and subsequent release of inorganic phosphate. Several actin binding proteins sense specific states during this transition and can thus target different regions of the actin filament. Here we show in atomic detail that phalloidin, a mushroom toxin that is routinely used to stabilize and label actin filaments, suspends the structural changes in actin, likely influencing its interaction with actin binding proteins. Furthermore, high-resolution cryo-EM structures reveal structural rearrangements in F-actin upon inorganic phosphate release in phalloidin-stabilized filaments. We find that the effect of the sponge toxin jasplakinolide differs from the one of phalloidin, despite their overlapping binding site and similar interactions with the actin filament. Analysis of structural conformations of F-actin suggests that stabilizing agents trap states within the natural conformational space of actin.Abstract FigureHighlightsFive high-resolution cryo-EM structures of stabilized filamentous actinPhalloidin traps different structural states depending on when it is addedThe effect of phalloidin and jasplakinolide on filamentous actin is not identicalBoth toxins likely interfere with the binding of proteins sensing F-actin’s nucleotide state

1995 ◽  
Vol 131 (6) ◽  
pp. 1483-1493 ◽  
Author(s):  
T S Karpova ◽  
K Tatchell ◽  
J A Cooper

Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.


2013 ◽  
Vol 24 (23) ◽  
pp. 3710-3720 ◽  
Author(s):  
Scott D. Hansen ◽  
Adam V. Kwiatkowski ◽  
Chung-Yueh Ouyang ◽  
HongJun Liu ◽  
Sabine Pokutta ◽  
...  

The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.


Author(s):  
Minkyo Jung ◽  
Doory Kim ◽  
Ji Young Mun

Actin networks and actin-binding proteins (ABPs) are most abundant in the cytoskeleton of neurons. The function of ABPs in neurons is nucleation of actin polymerization, polymerization or depolymerization regulation, bundling of actin through crosslinking or stabilization, cargo movement along actin filaments, and anchoring of actin to other cellular components. In axons, ABP–actin interaction forms a dynamic, deep actin network, which regulates axon extension, guidance, axon branches, and synaptic structures. In dendrites, actin and ABPs are related to filopodia attenuation, spine formation, and synapse plasticity. ABP phosphorylation or mutation changes ABP–actin binding, which regulates axon or dendritic plasticity. In addition, hyperactive ABPs might also be expressed as aggregates of abnormal proteins in neurodegeneration. Those changes cause many neurological disorders. Here, we will review direct visualization of ABP and actin using various electron microscopy (EM) techniques, super resolution microscopy (SRM), and correlative light and electron microscopy (CLEM) with discussion of important ABPs in neuron.


2003 ◽  
Vol 83 (2) ◽  
pp. 433-473 ◽  
Author(s):  
C. G. Dos Remedios ◽  
D. Chhabra ◽  
M. Kekic ◽  
I. V. Dedova ◽  
M. Tsubakihara ◽  
...  

The actin cytoskeleton is a complex structure that performs a wide range of cellular functions. In 2001, significant advances were made to our understanding of the structure and function of actin monomers. Many of these are likely to help us understand and distinguish between the structural models of actin microfilaments. In particular, 1) the structure of actin was resolved from crystals in the absence of cocrystallized actin binding proteins (ABPs), 2) the prokaryotic ancestral gene of actin was crystallized and its function as a bacterial cytoskeleton was revealed, and 3) the structure of the Arp2/3 complex was described for the first time. In this review we selected several ABPs (ADF/cofilin, profilin, gelsolin, thymosin β4, DNase I, CapZ, tropomodulin, and Arp2/3) that regulate actin-driven assembly, i.e., movement that is independent of motor proteins. They were chosen because 1) they represent a family of related proteins, 2) they are widely distributed in nature, 3) an atomic structure (or at least a plausible model) is available for each of them, and 4) each is expressed in significant quantities in cells. These ABPs perform the following cellular functions: 1) they maintain the population of unassembled but assembly-ready actin monomers (profilin), 2) they regulate the state of polymerization of filaments (ADF/cofilin, profilin), 3) they bind to and block the growing ends of actin filaments (gelsolin), 4) they nucleate actin assembly (gelsolin, Arp2/3, cofilin), 5) they sever actin filaments (gelsolin, ADF/cofilin), 6) they bind to the sides of actin filaments (gelsolin, Arp2/3), and 7) they cross-link actin filaments (Arp2/3). Some of these ABPs are essential, whereas others may form regulatory ternary complexes. Some play crucial roles in human disorders, and for all of them, there are good reasons why investigations into their structures and functions should continue.


2016 ◽  
Vol 27 (16) ◽  
pp. 2519-2522 ◽  
Author(s):  
Pekka Lappalainen

The actin cytoskeleton supports a vast number of cellular processes in nonmuscle cells. It is well established that the organization and dynamics of the actin cytoskeleton are controlled by a large array of actin-binding proteins. However, it was only 40 years ago that the first nonmuscle actin-binding protein, filamin, was identified and characterized. Filamin was shown to bind and cross-link actin filaments into higher-order structures and contribute to phagocytosis in macrophages. Subsequently many other nonmuscle actin-binding proteins were identified and characterized. These proteins regulate almost all steps of the actin filament assembly and disassembly cycles, as well as the arrangement of actin filaments into diverse three-dimensional structures. Although the individual biochemical activities of most actin-regulatory proteins are relatively well understood, knowledge of how these proteins function together in a common cytoplasm to control actin dynamics and architecture is only beginning to emerge. Furthermore, understanding how signaling pathways and mechanical cues control the activities of various actin-binding proteins in different cellular, developmental, and pathological processes will keep researchers busy for decades.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3648-3657 ◽  
Author(s):  
CA Vasconcellos ◽  
SE Lind

Actin is an abundant intracellular protein that is released into the blood during tissue injury and its injection into rats causes microthrombi to form in the vasculature. This report and others have shown that actin filaments are able to aggregate platelets in an adenosine diphosphate (ADP)-dependent manner. The effects on this process of two plasma actin-binding proteins, vitamin D-binding protein (DBP) and gelsolin, were examined separately and together. The addition of DBP, a monomer-binding protein, to actin filaments did not affect their ability to induce platelet aggregation. However, severing of actin filaments with gelsolin resulted in an increased degree of platelet aggregation. Preincubation of F-actin with both gelsolin and DBP resulted in a significant inhibition of aggregation. The effects of DBP and gelsolin on actin-induced aggregation paralleled their effects on exchange of actin-bound adenine nucleotides. DBP inhibited 1, N6- ethenoadenosine 5′ triphosphate (epsilon-ATP) exchange with G-actin but not with F-actin. Gelsolin increased epsilon-ATP exchange with F-actin, which was largely abrogated by the addition of DBP. These results suggest that gelsolin's severing (and subsequent capping) of actin filaments not only results in an increase in the number of pointed filament ends but also in the dissociation of actin monomers containing ADP. Phalloidin, which stabilizes actin filaments while decreasing both monomer and nucleotide exchange, inhibited actin-induced aggregation, as well, indicating that depolymerization of actin filaments is not required to inhibit aggregation. Platelet activation by either G- or F- actin may thus be regulated by the local concentrations of the plasma actin-binding proteins gelsolin and DBP. Together, these proteins inhibit platelet aggregation in a manner that can be explained by their effects on actin's filament structure and the accessibility of its bound ADP. Depletion of DBP or gelsolin may allow actin released from injured tissues to stimulate purinergic receptors on platelets, and perhaps other cells, via its bound adenine nucleotides.


Sign in / Sign up

Export Citation Format

Share Document