scholarly journals Cell fusion during yeast mating requires high levels of a-factor mating pheromone.

1996 ◽  
Vol 135 (6) ◽  
pp. 1727-1739 ◽  
Author(s):  
V Brizzio ◽  
A E Gammie ◽  
G Nijbroek ◽  
S Michaelis ◽  
M D Rose

During conjugation, two yeast cells fuse to form a single zygote. Cell fusion requires extensive remodeling of the cell wall, both to form a seal between the two cells and to remove the intervening material. The two plasma membranes then fuse to produce a continuous cytoplasm. We report the characterization of two cell fusion defective (Fus-) mutants, fus5 and fus8, isolated previously in our laboratory. Fluorescence and electron microscopy demonstrated that the fus5 and fus8 mutant zygotes were defective for cell wall remodeling/removal but not plasma membrane fusion. Strikingly, fus5 and fus8 were a specific; both mutations caused the mutant phenotype when present in the MATa parent but not in the MAT alpha parent. Consistent with an a-specific defect, the fus5 and fus8 mutants produced less a-factor than the isogenic wild-type strain. FUS5 and FUS8 were determined to be allelic to AXL1 and RAM1, respectively, two genes known to be required for biogenesis of a-factor. Several experiments demonstrated that the partial defect in a-factor production resulted in the Fus- phenotype. First, overexpression of a-factor in the fus mutants suppressed the Fus- defect. Second, matings to an MAT alpha partner supersensitive to mating pheromone (sst2 delta) suppressed the Fus- defect in trans. Finally, the gene encoding a-factor, MFA1, was placed under the control of a repressible promoter; reduced levels of wild-type a-factor caused an identical cell fusion defect during mating. We conclude that high levels of pheromone are required as one component of the signal for prezygotes to initiate cell fusion.

2007 ◽  
Vol 176 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Maxwell G. Heiman ◽  
Alex Engel ◽  
Peter Walter

The molecular machines that mediate cell fusion are unknown. Previously, we identified a multispanning transmembrane protein, Prm1 (pheromone-regulated membrane protein 1), that acts during yeast mating (Heiman, M.G., and P. Walter. 2000. J. Cell Biol. 151:719–730). Without Prm1, a substantial fraction of mating pairs arrest with their plasma membranes tightly apposed yet unfused. In this study, we show that lack of the Golgi-resident protease Kex2 strongly enhances the cell fusion defect of Prm1-deficient mating pairs and causes a mild fusion defect in otherwise wild-type mating pairs. Lack of the Kex1 protease but not the Ste13 protease results in similar defects. Δkex2 and Δkex1 fusion defects were suppressed by osmotic support, a trait shared with mutants defective in cell wall remodeling. In contrast, other cell wall mutants do not enhance the Δprm1 fusion defect. Electron microscopy of Δkex2-derived mating pairs revealed novel extracellular blebs at presumptive sites of fusion. Kex2 and Kex1 may promote cell fusion by proteolytically processing substrates that act in parallel to Prm1 as an alternative fusion machine, as cell wall components, or both.


2020 ◽  
Vol 117 (46) ◽  
pp. 29046-29054 ◽  
Author(s):  
Nicolas L. Fernandez ◽  
Brian Y. Hsueh ◽  
Nguyen T. Q. Nhu ◽  
Joshua L. Franklin ◽  
Yann S. Dufour ◽  
...  

The cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. Alterations to the rod shape, such as the curved rod, occur through manipulating the process of cell wall synthesis. The human pathogenVibrio choleraetypically exists as a curved rod, but straight rods have been observed under certain conditions. While this appears to be a regulated process, the regulatory pathways controlling cell shape transitions inV. choleraeand the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape inV. choleraeis regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by posttranscriptionally repressing expression ofcrvA, a gene encoding an intermediate filament-like protein necessary for curvature formation inV. cholerae.This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated withV. cholerae’s induction of sessility. During microcolony formation, wild-typeV. choleraecells tended to exist as straight rods, while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straightV. choleraemutants have reduced swimming speed when using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic and biofilm lifestyles.


1990 ◽  
Vol 110 (1) ◽  
pp. 105-114 ◽  
Author(s):  
B K Haarer ◽  
S H Lillie ◽  
A E Adams ◽  
V Magdolen ◽  
W Bandlow ◽  
...  

We have isolated profilin from yeast (Saccharomyces cerevisiae) and have microsequenced a portion of the protein to confirm its identity; the region microsequenced agrees with the predicted amino acid sequence from a profilin gene recently isolated from S. cerevisiae (Magdolen, V., U. Oechsner, G. Müller, and W. Bandlow. 1988. Mol. Cell. Biol. 8:5108-5115). Yeast profilin resembles profilins from other organisms in molecular mass and in the ability to bind to polyproline, retard the rate of actin polymerization, and inhibit hydrolysis of ATP by monomeric actin. Using strains that carry disruptions or deletions of the profilin gene, we have found that, under appropriate conditions, cells can survive without detectable profilin. Such cells grow slowly, are temperature sensitive, lose the normal ellipsoidal shape of yeast cells, often become multinucleate, and generally grow much larger than wild-type cells. In addition, these cells exhibit delocalized deposition of cell wall chitin and have dramatically altered actin distributions.


1995 ◽  
Vol 15 (3) ◽  
pp. 1382-1388 ◽  
Author(s):  
P J Lapinskas ◽  
K W Cunningham ◽  
X F Liu ◽  
G R Fink ◽  
V C Culotta

Mutants of Saccharomyces cerevisiae lacking a functional SOD1 gene encoding Cu/Zn superoxide dismutase (SOD) are sensitive to atmospheric levels of oxygen and are auxotrophic for lysine and methionine when grown in air. We have previously shown that these defects of SOD-deficient yeast cells can be overcome through mutations in either the BSD1 or BSD2 (bypass SOD defects) gene. In this study, the wild-type allele of BSD1 was cloned by functional complementation and was physically mapped to the left arm of chromosome VII. BSD1 is identical to PMR1, encoding a member of the P-type ATPase family that localizes to the Golgi apparatus. PMR1 is thought to function in calcium metabolism, and we provide evidence that PMR1 also participates in the homeostasis of manganese ions. Cells lacking a functional PMR1 gene accumulate elevated levels of intracellular manganese and are also extremely sensitive to manganese ion toxicity. We demonstrate that mutations in PMR1 bypass SOD deficiency through a mechanism that depends on extracellular manganese. Collectively, these findings indicate that oxidative damage in a eukaryotic cell can be prevented through alterations in manganese homeostasis.


2006 ◽  
Vol 17 (5) ◽  
pp. 2439-2450 ◽  
Author(s):  
Scott Nolan ◽  
Ann E. Cowan ◽  
Dennis E. Koppel ◽  
Hui Jin ◽  
Eric Grote

Mating yeast cells provide a genetically accessible system for the study of cell fusion. The dynamics of fusion pores between yeast cells were analyzed by following the exchange of fluorescent markers between fusion partners. Upon plasma membrane fusion, cytoplasmic GFP and DsRed diffuse between cells at rates proportional to the size of the fusion pore. GFP permeance measurements reveal that a typical fusion pore opens with a burst and then gradually expands. In some mating pairs, a sudden increase in GFP permeance was found, consistent with the opening of a second pore. In contrast, other fusion pores closed after permitting a limited amount of cytoplasmic exchange. Deletion of FUS1 from both mating partners caused a >10-fold reduction in the initial permeance and expansion rate of the fusion pore. Although fus1 mating pairs also have a defect in degrading the cell wall that separates mating partners before plasma membrane fusion, other cell fusion mutants with cell wall remodeling defects had more modest effects on fusion pore permeance. Karyogamy is delayed by >1 h in fus1 mating pairs, possibly as a consequence of retarded fusion pore expansion.


2020 ◽  
Author(s):  
Nicolas L. Fernandez ◽  
Nguyen T. Q. Nhu ◽  
Brian Y. Hsueh ◽  
Joshua L. Franklin ◽  
Yann S. Dufour ◽  
...  

AbstractThe cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. While V. cholerae grows into a curved shape under most conditions, straight rods have been observed. However, the signals and regulatory pathways controlling cell shape transitions in V. cholerae and the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape in V. cholerae is regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by repressing expression of crvA, a gene encoding an intermediate filament-like protein necessary for curvature formation in V. cholerae. This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated with V. cholerae’s induction of sessility. Wild-type V. cholerae cells adhering to a surface lose their characteristic curved shape to become as straight as cells lacking crvA while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straight V. cholerae mutants have reduced speed when swimming using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic or biofilm lifestyles.


1984 ◽  
Vol 66 (1) ◽  
pp. 223-239
Author(s):  
B.E. Millikin ◽  
R.L. Weiss

Cell surface carbohydrates, detected by fluorescein isothiocyanate/concanavalin A (FITC-ConA), were identified at four locations on gametes of Chlamydomonas reinhardtii. (1) The cell wall: uniform labelling with FITC-ConA was observed; a substantial number of sites were localized in the sodium dodecyl sulphate-insoluble inner wall, which contains the flagellar collars. (2) The periplasm: a crescent-shaped area was visualized with FITC-ConA and localized by ferritin-ConA. We were able to recover autolytic activity on a ConA affinity column from the mating medium of wild-type cells after the release of these periplasmic sites. The cell-wall-less mutant CW15 displays no periplasmic sites and demonstrates a corresponding inability to release autolytic activity after mating for 60 min. A model for wall lysis is presented, which considers the involvement of these sites in the lytic process. (3) The mating structure: during mating a small fluorescent plaque-like site was observed on cells at a location corresponding to the carbohydrate-like zone of the mating type minus mating structure and may indicate the involvement of ConA binding material in gametic cell fusion. (4) Secreted products: following cell fusion zygotes begin to secrete ConA positive material at about 1 1/2 h. After 24 h a ConA positive zygote wall and pellicle appear.


2016 ◽  
Vol 82 (15) ◽  
pp. 4789-4801 ◽  
Author(s):  
Marion Schiavone ◽  
Cécile Formosa-Dague ◽  
Carolina Elsztein ◽  
Marie-Ange Teste ◽  
Helene Martin-Yken ◽  
...  

ABSTRACTA wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeastSaccharomyces cerevisiae. However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressingMSN2was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells.IMPORTANCEEthanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.


2002 ◽  
Vol 1 (5) ◽  
pp. 811-822 ◽  
Author(s):  
Mingliang Zhang ◽  
Daniel Bennett ◽  
Scott E. Erdman

ABSTRACT Fungal adhesins represent a large family of serine/threonine-rich secreted glycoproteins. Adhesins have been shown to play roles in heterotypic and homotypic cell-cell adhesion processes, morphogenetic pathways and invasive/pseudohyphal growth, frequently in response to differentiation cues. Here we address the role of the Saccharomyces cerevisiae mating-specific adhesin Fig2p. Cells lacking FIG2 possess a variety of mating defects that relate to processes involving the cell wall, including morphogenetic defects, cell fusion defects, and alterations in agglutination activities. We found that mating-specific morphogenetic defects caused by the absence of FIG2 are suppressible by increased external osmolarity and that, during mating, fig2Δ cells display reduced viability relative to wild-type cells. These defects result from alterations in signaling activated by the mating and cell integrity pathways. Finally, we show that fig2Δ zygotes also have defects in zygotic spindle positioning that are osmoremedial, whereas the requirements for FIG2 in normal cell-cell agglutination and cell fusion during mating are insensitive to changes in the extracellular osmotic environment. We conclude that FIG2 performs distinct functions in the mating cell wall that are separable with respect to their ability to be suppressed by changes in external osmolarity and that a fundamental role of FIG2 in mating cells is the maintenance of cell integrity.


1998 ◽  
Vol 140 (3) ◽  
pp. 461-483 ◽  
Author(s):  
Scott Erdman ◽  
Li Lin ◽  
Michael Malczynski ◽  
Michael Snyder

Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for β-galactosidase (β-gal) expression in the presence and absence of α factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell–cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: β-gal and Fig2::β-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.


Sign in / Sign up

Export Citation Format

Share Document