scholarly journals Regulation of β-Catenin Levels and Localization by Overexpression of Plakoglobin and Inhibition of the Ubiquitin-Proteasome System

1997 ◽  
Vol 139 (5) ◽  
pp. 1325-1335 ◽  
Author(s):  
Daniela Salomon ◽  
Paula A. Sacco ◽  
Sujata Guha Roy ◽  
Inbal Simcha ◽  
Keith R. Johnson ◽  
...  

β-Catenin and plakoglobin (γ-catenin) are closely related molecules of the armadillo family of proteins. They are localized at the submembrane plaques of cell–cell adherens junctions where they form independent complexes with classical cadherins and α-catenin to establish the link with the actin cytoskeleton. Plakoglobin is also found in a complex with desmosomal cadherins and is involved in anchoring intermediate filaments to desmosomal plaques. In addition to their role in junctional assembly, β-catenin has been shown to play an essential role in signal transduction by the Wnt pathway that results in its translocation into the nucleus. To study the relationship between plakoglobin expression and the level of β-catenin, and the localization of these proteins in the same cell, we employed two different tumor cell lines that express N-cadherin, and α- and β-catenin, but no plakoglobin or desmosomal components. Individual clones expressing various levels of plakoglobin were established by stable transfection. Plakoglobin overexpression resulted in a dose-dependent decrease in the level of β-catenin in each clone. Induction of plakoglobin expression increased the turnover of β-catenin without affecting RNA levels, suggesting posttranslational regulation of β-catenin. In plakoglobin overexpressing cells, both β-catenin and plakoglobin were localized at cell– cell junctions. Stable transfection of mutant plakoglobin molecules showed that deletion of the N-cadherin binding domain, but not the α-catenin binding domain, abolished β-catenin downregulation. Inhibition of the ubiquitin-proteasome pathway in plakoglobin overexpressing cells blocked the decrease in β-catenin levels and resulted in accumulation of both β-catenin and plakoglobin in the nucleus. These results suggest that (a) plakoglobin substitutes effectively with β-catenin for association with N-cadherin in adherens junctions, (b) extrajunctional β-catenin is rapidly degraded by the proteasome-ubiquitin system but, (c) excess β-catenin and plakoglobin translocate into the nucleus.

2004 ◽  
Vol 32 (5) ◽  
pp. 797-798 ◽  
Author(s):  
E.D. Martin ◽  
M. Grealy

Plakoglobin (γ-catenin) and β-catenin are major components of the adherens junctions and can be localized to the nucleus by activation of the Wnt signalling pathway. In addition, plakoglobin is also found in desmosomes, a vertebrate-specific cell–cell adhesion structure. Plakoglobin expression and localization were examined at the protein level during zebrafish embryonic development by Western blotting and confocal microscopy. Plakoglobin was expressed throughout embryo development at the protein level. Western blotting revealed that embryonic plakoglobin protein content increased between 12- and 24-h post-fertilization (hpf). Confocal microscopy showed that at stages up to 12 hpf, plakoglobin and β-catenin were co-localized and expressed in both the nucleus and in cell–cell junctions. At 24- and 72-hpf, separate patterns were seen for plakoglobin and β-catenin. These data indicate that plakoglobin localization in the heart region shifts from adherens junctions to desmosomes during heart chamber development.


1994 ◽  
Vol 126 (1) ◽  
pp. 247-258 ◽  
Author(s):  
O Ayalon ◽  
H Sabanai ◽  
M G Lampugnani ◽  
E Dejana ◽  
B Geiger

The integrity of the endothelial layer, which lines the entire cavity of the vascular system, depends on tight adhesion of the cells to the underlying basement membrane as well as to each other. It has been previously shown that such interactions occur via membrane receptors that determine the specificity, topology, and mechanical properties of the surface adhesion. Cell-cell junctions between endothelial cells, in culture and in situ, involve both Ca(2+)-dependent and -independent mechanisms that are mediated by distinct adhesion molecules. Ca(2+)-dependent cell-cell adhesion occurs mostly via members of the cadherin family, which locally anchor the microfilament system to the plasma membrane, in adherens junctions. Ca(2+)-independent adhesions were reported to mainly involve members of the Ig superfamily. In this study, we performed three-dimensional microscopic analysis of the relative subcellular distributions of these two endothelial intercellular adhesion systems. We show that cadherins are located at adjacent (usually more apical), yet clearly distinct domains of the lateral plasma membrane, compared to PECAM-1. Moreover, cadherins were first organized in adherens junctions within 2 h after seeding of endothelial cells, forming multiple lateral patches which developed into an extensive belt-like structure over a period of 24 h. PECAM-1 became associated with surface adhesions significantly later and became progressively associated with the cadherin-containing adhesions. Cadherins and PECAM-1 also differed in their detergent extractability, reflecting differences in their mode of association with the cytoskeleton. Moreover, the two adhesion systems could be differentially modulated since short treatment with the Ca2+ chelator EGTA, disrupted the cadherin junctions leaving PECAM-1 apparently intact. These results confirm that endothelial cells possess distinct intercellular contact mechanisms that differ in their spatial and temporal organization as well as in their functional properties.


2021 ◽  
Author(s):  
Qilin Yu ◽  
William R. Holmes ◽  
Jean P. Thiery ◽  
Rodney B. Luwor ◽  
Vijay Rajagopal

AbstractAdherens junctions (AJs) physically link two cells at their contact interface via extracellular homophilic interactions between cadherin molecules and intracellular connections between cadherins and the actomyosin cortex. Both cadherin and actomyosin cytoskeletal dynamics are reciprocally regulated by mechanical and chemical signals, which subsequently determine the strength of cell-cell adhesions and the emergent organization and stiffness of the tissues they form. However, an understanding of the integrated system is lacking. We present a new mechanistic computational model of intercellular junction maturation in a cell doublet to investigate the mechano-chemical crosstalk that regulates AJ formation and homeostasis. The model couples a 2D lattice-based model of cadherin dynamics with a continuum, reaction-diffusion model of the reorganizing actomyosin network through its regulation by Rho signaling at the intercellular junction. We demonstrate that local immobilization of cadherin induces cluster formation in a cis less dependent manner. We further investigate how cadherin and actin regulate and cooperate. By considering the force balance during AJ maturation and the force-sensitive property of the cadherin/F-actin linking molecules, we show that cortical tension applied on the contact rim can explain the ring distribution of cadherin and F-actin on the cell-cell contact of the cell-doublet. Meanwhile, the positive feedback loop between cadherin and F-actin is necessary for maintenance of the ring. Different patterns of cadherin distribution can be observed as an emergent property of disturbances of this feedback loop. We discuss these findings in light of available experimental observations on underlying mechanisms related to cadherin/F-actin binding and the mechanical environment.Significance StatementThe formation, maintenance and disassembly of adherens junctions (AJs) is fundamental to organ development, tissue integrity as well as tissue function. E-cadherins and F-actin are two major players of the adherens junctions (AJs). Although it is well known that cadherins and F-actin affect each other, how these two players work together to maintain the intercellular contact is unclear. Using a novel mechano-chemical model of E-cadherin and F-actin remodeling, we demonstrate that a positive feedback loop between cadherins and F-actin allows them to stabilize each other locally. Mechanical and chemical stimuli applied to the cell adhesion change E-cadherin and F-actin distribution by consolidating or interrupting the feedback loop locally. Our study mechanistically links mechanical force to E-cadherin patterning at cell-cell junctions.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3128-3135 ◽  
Author(s):  
Jurgen A. F. Marteijn ◽  
Laurens T. van der Meer ◽  
Liesbeth van Emst ◽  
Simon van Reijmersdal ◽  
Willemijn Wissink ◽  
...  

Abstract Growth factor independence 1 (Gfi1) is a transcriptional repressor essential for the function and development of many different hematopoietic lineages. The Gfi1 protein expression is regulated by the ubiquitin-proteasome system. In granulocytes, Gfi1 is rapidly degraded by the proteasome, while it is more stable in monocytes. How the ubiquitination and degradation of Gfi1 is regulated is unclear. Here, we show that the ubiquitin ligase Triad1 interacts with the DNA-binding domain of Gfi1. Unexpectedly, we found that Triad1 inhibited Gfi1 ubiquitination, resulting in a prolonged half-life. Down-regulation of endogenous Triad1 by siRNAs resulted in increased Gfi1 ubiquitination. In U937 cells, Triad1 caused an increase in endogenous Gfi1 protein levels and slowed cell proliferation in a similar manner when Gfi1 itself was expressed. A Triad1 mutant that lacks the Gfi1-binding domain did not affect Gfi1 levels and proliferation. Because neither proteasome-ubiquitin nor Triad1 ubiquitin ligase activity was required for the inhibition of Gfi1 ubiquitination, these data suggest that Triad1 competes for Gfi1 binding with as yet to be identified E3 ubiquitin ligases that do mark Gfi1 for proteasomal degradation. The finetuning of Gfi1 protein levels regulated by Triad1 defines an unexpected role for this protein in hematopoiesis.


2012 ◽  
Vol 302 (11) ◽  
pp. H2220-H2229 ◽  
Author(s):  
Lucas H. Ting ◽  
Jessica R. Jahn ◽  
Joon I. Jung ◽  
Benjamin R. Shuman ◽  
Shirin Feghhi ◽  
...  

Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.


1998 ◽  
Vol 143 (7) ◽  
pp. 2009-2022 ◽  
Author(s):  
G. Ian Gallicano ◽  
Panos Kouklis ◽  
Christoph Bauer ◽  
Mei Yin ◽  
Valeri Vasioukhin ◽  
...  

Desmosomes first assemble in the E3.5 mouse trophectoderm, concomitant with establishment of epithelial polarity and appearance of a blastocoel cavity. Throughout development, they increase in size and number and are especially abundant in epidermis and heart muscle. Desmosomes mediate cell–cell adhesion through desmosomal cadherins, which differ from classical cadherins in their attachments to intermediate filaments (IFs), rather than actin filaments. Of the proteins implicated in making this IF connection, only desmoplakin (DP) is both exclusive to and ubiquitous among desmosomes. To explore its function and importance to tissue integrity, we ablated the desmoplakin gene. Homozygous −/− mutant embryos proceeded through implantation, but did not survive beyond E6.5. Mutant embryos proceeded through implantation, but did not survive beyond E6.5. Surprisingly, analysis of these embryos revealed a critical role for desmoplakin not only in anchoring IFs to desmosomes, but also in desmosome assembly and/or stabilization. This finding not only unveiled a new function for desmoplakin, but also provided the first opportunity to explore desmosome function during embryogenesis. While a blastocoel cavity formed and epithelial cell polarity was at least partially established in the DP (−/−) embryos, the paucity of desmosomal cell–cell junctions severely affected the modeling of tissue architecture and shaping of the early embryo.


2005 ◽  
Vol 289 (2) ◽  
pp. F431-F441 ◽  
Author(s):  
Maribel Rico ◽  
Amitava Mukherjee ◽  
Martha Konieczkowski ◽  
Leslie A. Bruggeman ◽  
R. Tyler Miller ◽  
...  

Podocyte differentiation is required for normal glomerular filtration barrier function and is regulated by the transcription factor WT1. We identified WT1-interacting protein (WTIP) and hypothesized that it functions as both a scaffold for slit diaphragm proteins and a corepressor of WT1 transcriptional activity by shuttling from cell-cell junctions to the nucleus after injury. Endogenous WTIP colocalizes with zonula occludens-1 (ZO-1) in cultured mouse podocyte adherens junctions. To model podocyte injury in vitro, we incubated differentiated podocytes with puromycin aminonucleoside (PAN; 100 μg/ml) for 24 h, which disassembled cell-cell contacts, rearranged actin cytoskeleton, and caused process retraction. Podocyte synaptopodin expression diminished after PAN treatment, consistent with podocyte dedifferentiation in some human glomerular diseases. To assess podocyte function, we measured albumin flux across differentiated podocytes cultured on collagen-coated Transwell filters. Albumin transit across PAN-treated cells increased to levels observed with undifferentiated podocytes. Consistent with our hypothesis, WTIP, as well as ZO-1, translocated from podocyte adherens junctions to nuclei in PAN-treated cells. Because WTIP is a transcriptional corepressor for WT1, we examined the effect of PAN on expression of retinoblastoma binding protein Rbbp7 (also known as RbAp46), a WT1 target gene expressed in S-shaped bodies during nephrogenesis. Rbbp7 expression in PAN-treated podocytes was reduced compared with untreated cells. In conclusion, WTIP translocates from cell-cell junctions to the nucleus in PAN-treated podocytes. We suggest that WTIP monitors slit diaphragm protein assembly and shuttles into the nucleus after podocyte injury, translating changes in slit diaphragm structure into altered gene expression and a less differentiated phenotype.


2004 ◽  
Vol 286 (5) ◽  
pp. C1159-C1169 ◽  
Author(s):  
Ruei-Jiun Hung ◽  
Ia-Wen J. Hsu ◽  
Jennifer L. Dreiling ◽  
Mon-Juan Lee ◽  
Cicely A. Williams ◽  
...  

Sphingosine 1-phosphate (S1P), a bioactive phospholipid, simultaneously induces actin cytoskeletal rearrangements and activation of matriptase, a membrane-associated serine protease in human mammary epithelial cells. In this study, we used a monoclonal antibody selective for activated, two-chain matriptase to examine the functional relationship between these two S1P-induced events. Ten minutes after exposure of 184 A1N4 mammary epithelial cells to S1P, matriptase was observed to accumulate at cell-cell contacts. Activated matriptase first began to appear as small spots at cell-cell contacts, and then its deposits elongated along cell-cell contacts. Concomitantly, S1P induced assembly of adherens junctions and subcortical actin belts. Matriptase localization was observed to be coincident with markers of adherens junctions at cell-cell contacts but likely not to be incorporated into the tightly bound adhesion plaque. Disruption of subcortical actin belt formation and prevention of adherens junction assembly led to prevention of accumulation and activation of the protease at cell-cell contacts. These data suggest that S1P-induced accumulation and activation of matriptase depend on the S1P-induced adherens junction assembly. Although MAb M32, directed against one of the low-density lipoprotein receptor class A domains of matriptase, blocked S1P-induced activation of the enzyme, the antibody had no effect on S1P-induced actin cytoskeletal rearrangement. Together, these data indicate that actin cytoskeletal rearrangement is necessary but not sufficient for S1P-induced activation of matriptase at cell-cell contacts. The coupling of matriptase activation to adherens junction assembly and actin cytoskeletal rearrangement may serve to ensure tight control of matriptase activity, restricted to cell-cell junctions of mammary epithelial cells.


2019 ◽  
Author(s):  
Yuqi Zhang ◽  
Krista M. Pettee ◽  
Kathryn N. Becker ◽  
Kathryn M. Eisenmann

AbstractBackgroundEpithelial ovarian cancer (EOC) cells disseminate within the peritoneal cavity, in part, via the peritoneal fluid as single cells, clusters, or spheroids. Initial single cell egress from a tumor can involve disruption of cell-cell adhesions as cells are shed from the primary tumor into the peritoneum. In epithelial cells, Adherens Junctions (AJs) are characterized by homotypic linkage of E-cadherins on the plasma membranes of adjacent cells. AJs are anchored to the intracellular actin cytoskeletal network through a complex involving E-cadherin, p120 catenin, β-catenin, and αE-catenin. However, the specific players involved in the interaction between the junctional E-cadherin complex and the underlying F-actin network remains unclear. Recent evidence indicates that mammalian Diaphanous-related (mDia) formins plays a key role in epithelial cell AJ formation and maintenance through generation of linear actin filaments. Binding of αE-catenin to linear F-actin inhibits association of the branched-actin nucleator Arp2/3, while favoring linear F-actin bundling. We previously demonstrated that loss of mDia2 was associated with invasive single cell egress from EOC spheroids through disruption of junctional F-actin.ResultsIn the current study, we now show that mDia2 has a role at adherens junctions (AJs) in EOC OVCA429 cells and human embryonic kidney (HEK) 293 cells through its association with αE-catenin and β-catenin. mDia2 depletion in EOC cells leads to reduction in actin polymerization and disruption of cell-cell junctions with decreased interaction between β-catenin and E-cadherin.ConclusionsOur results support a necessary role for mDia2 in AJ stability in EOC cell monolayers and indicate a critical role for mDia formins in regulating EOC AJs during invasive transitions.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2022 ◽  
Author(s):  
Yoshihisa Watanabe ◽  
Katsutoshi Taguchi ◽  
Masaki Tanaka

Ubiquitin signals play various roles in proteolytic and non-proteolytic functions. Ubiquitin signals are recognized as targets of the ubiquitin–proteasome system and the autophagy–lysosome pathway. In autophagy, ubiquitin signals are required for selective incorporation of cargoes, such as proteins, organelles, and microbial invaders, into autophagosomes. Autophagy receptors possessing an LC3-binding domain and a ubiquitin binding domain are involved in this process. Autophagy activity can decline as a result of genetic variation, aging, or lifestyle, resulting in the onset of various neurodegenerative diseases. This review summarizes the selective autophagy of neurodegenerative disease-associated protein aggregates via autophagy receptors and discusses its therapeutic application for neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document