scholarly journals Regulation of the Cortical Actin Cytoskeleton in Budding Yeast by Twinfilin, a Ubiquitous Actin Monomer-sequestering Protein

1998 ◽  
Vol 142 (3) ◽  
pp. 723-733 ◽  
Author(s):  
Bruce L. Goode ◽  
David G. Drubin ◽  
Pekka Lappalainen

Here we describe the identification of a novel 37-kD actin monomer binding protein in budding yeast. This protein, which we named twinfilin, is composed of two cofilin-like regions. In our sequence database searches we also identified human, mouse, and Caenorhabditis elegans homologues of yeast twinfilin, suggesting that twinfilins form an evolutionarily conserved family of actin-binding proteins. Purified recombinant twinfilin prevents actin filament assembly by forming a 1:1 complex with actin monomers, and inhibits the nucleotide exchange reaction of actin monomers. Despite the sequence homology with the actin filament depolymerizing cofilin/actin-depolymerizing factor (ADF) proteins, our data suggests that twinfilin does not induce actin filament depolymerization. In yeast cells, a green fluorescent protein (GFP)–twinfilin fusion protein localizes primarily to cytoplasm, but also to cortical actin patches. Overexpression of the twinfilin gene (TWF1) results in depolarization of the cortical actin patches. A twf1 null mutation appears to result in increased assembly of cortical actin structures and is synthetically lethal with the yeast cofilin mutant cof1-22, shown previously to cause pronounced reduction in turnover of cortical actin filaments. Taken together, these results demonstrate that twinfilin is a novel, highly conserved actin monomer-sequestering protein involved in regulation of the cortical actin cytoskeleton.

Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Renáta Švubová ◽  
Alžbeta Blehová

AbstractAgrobacterium tumefaciens-mediated transformation of callus culture, combined with a visual selection of GFP-tagged fimbrin actin binding domain (FABD2) expression is described for parasitic species (Cuscuta europaea). The conditions for callus induction from 1 cm-long explants from the basal part of 7-day-old dodder seedlings were defined. We obtained light-green calli, which were transformed with A. tumefaciens bacterial strain GV3101 carrying plasmid pCB302 (35S::ABD2:gfp) with neomycin phosphotransferase (nptII) gene. The limitations of selection procedures based on antibiotics were avoided using green fluorescent protein (GFP) detection, as a visual selection marker subcellularly targeted to the actin cytoskeleton. Fluorescence microscopy analyses demonstrated a network of nucleus-associated actin arrays and dense cortical actin arrangements in stably transformed Cuscuta callus cells. RT-PCR analyses confirmed gfp expression in transformed calli 7, 14 and 21 days after transformation. Although the GFP fluorescence associated with the actin cytoskeleton has retained for at least six months without silencing, no shoot regeneration was observed. It can be concluded that, C. europaea callus cells are competent for transformation, but under given conditions, these cells failed to realize their morphogenic and regeneration potentials.


2002 ◽  
Vol 115 (6) ◽  
pp. 1221-1229 ◽  
Author(s):  
Tomoo Ohashi ◽  
Daniel P. Kiehart ◽  
Harold P. Erickson

We have prepared 3T3 cells doubly labeled to visualize simultaneously the extracellular fibronectin (FN) matrix and intracellular actin cytoskeleton in living cell cultures. We used FN-yellow fluorescent protein (FN-yfp) for the FN matrix, and the actin-binding domain of moesin fused to cyan fluorescent protein (cfp-Moe) to stain actin. Actin filament bundles were clearly seen in the protruding lamellae of the cells. FN matrix assembly appeared to be initiated as small spots of FN at the ends of actin filament bundles. The spots then elongated along the actin filament bundle toward the cell center to form FN fibrils. The end of the fibril towards the cell edge appeared immobile, and probably attached to the substrate, whereas the end toward the cell center frequently showed movements, suggesting attachment to the cell. Combining our data with the observations of Pankov et al. we suggest that fibrils grow by stretching this mobile end toward the cell center while adding new FN molecules at the end and along the entire lenght. When the cell culture was treated with cytochalasin to disrupt the actin cytoskeleton, some fibrils contracted substantially, suggesting that the segment attached primarily to the cell surface is stretched.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Janet M Murray ◽  
Douglas I Johnson

Abstract The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24ts mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1+, encoded an ~15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Δnrf1 mutant was viable but overexpression of nrf1+ in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1+ also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.


2000 ◽  
Vol 150 (6) ◽  
pp. 1321-1334 ◽  
Author(s):  
Zhengshan Dai ◽  
Xiaoyan Luo ◽  
Hongbo Xie ◽  
H. Benjamin Peng

A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin–binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule–coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead–muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein–coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.


1995 ◽  
Vol 128 (4) ◽  
pp. 599-615 ◽  
Author(s):  
R Li ◽  
Y Zheng ◽  
D G Drubin

We have established an in vitro assay for assembly of the cortical actin cytoskeleton of budding yeast cells. After permeabilization of yeast by a novel procedure designed to maintain the spatial organization of cellular constituents, exogenously added fluorescently labeled actin monomers assemble into distinct structures in a pattern that is similar to the cortical actin distribution in vivo. Actin assembly in the bud of small-budded cells requires a nucleation activity provided by protein factors that appear to be distinct from the barbed ends of endogenous actin filaments. This nucleation activity is lost in cells that lack either Sla1 or Sla2, proteins previously implicated in cortical actin cytoskeleton function, suggesting a possible role for these proteins in the nucleation reaction. The rate and the extent of actin assembly in the bud are increased in permeabilized delta cap2 cells, providing evidence that capping protein regulates the ability of the barbed ends of actin filaments to grow in yeast cells. Actin incorporation in the bud can be stimulated by treating the permeabilized cells with GTP-gamma S, and, significantly, the stimulatory effect is eliminated by a mutation in CDC42, a gene that encodes a Rho-like GTP-binding protein required for bud formation. Furthermore, the lack of actin nucleation activity in the cdc42 mutant can be complemented in vitro by a constitutively active Cdc42 protein. These results suggest that Cdc42 is closely involved in regulating actin assembly during polarized cell growth.


2007 ◽  
Vol 18 (8) ◽  
pp. 3002-3014 ◽  
Author(s):  
Faisal Chaudhry ◽  
Christophe Guérin ◽  
Matthias von Witsch ◽  
Laurent Blanchoin ◽  
Christopher J. Staiger

The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP–actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP– and ATP–monomeric actin (Kd ∼ 1.3 μM). Binding of AtCAP1 to ATP–actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of subunits through actin filament barbed ends. Collectively, these results and our understanding of other actin-binding proteins implicate CAP1 as a central player in regulating the pool of unpolymerized ATP–actin.


2002 ◽  
Vol 115 (5) ◽  
pp. 881-886 ◽  
Author(s):  
Sandra Palmgren ◽  
Maria Vartiainen ◽  
Pekka Lappalainen

Twinfilin is a ubiquitous actin-monomer-binding protein that is composed of two ADF-homology domains. It forms a 1:1 complex with ADP-actin-monomers,inhibits nucleotide exchange on actin monomers and prevents assembly of the monomer into filaments. The two ADF-H domains in twinfilin probably have 3D structures similar to those of the ADF/cofilin proteins and overlapping actin-binding sites. Twinfilin also interacts with PtdIns(4,5)P2, which inhibits its actin-monomer-sequestering activity in vitro. Mutations in the twinfilin gene result in defects in the bipolar budding pattern in S. cerevisiae and in a rough eye phenotype and aberrant bristle morphology in Drosophila melanogaster. These phenotypes are caused by the uncontrolled polymerization of actin filaments in the absence of twinfilin. Studies on budding yeast suggest that twinfilin contributes to actin filament turnover by localizing actin monomers, in their `inactive'ADP-form, to the sites of rapid filament assembly. This is mediated through direct interactions between twinfilin and capping protein. Therefore,twinfilin might serve as a link between rapid actin filament depolymerization and assembly in cells.


Endocrinology ◽  
2015 ◽  
Vol 157 (2) ◽  
pp. 831-843 ◽  
Author(s):  
Brian S. Edwards ◽  
An K. Dang ◽  
Dilyara A. Murtazina ◽  
Melissa G. Dozier ◽  
Jennifer D. Whitesell ◽  
...  

Abstract We have shown that GnRH-mediated engagement of the cytoskeleton induces cell movement and is necessary for ERK activation. It also has previously been established that a dominant negative form of the mechano-GTPase dynamin (K44A) attenuates GnRH activation of ERK. At present, it is not clear at what level these cellular events might be linked. To explore this, we used live cell imaging in the gonadotrope-derived αT3–1 cell line to determine that dynamin-green fluorescent protein accumulated in GnRH-induced lamellipodia and plasma membrane protrusions. Coincident with translocation of dynamin-green fluorescent protein to the plasma membrane, we demonstrated that dynamin colocalizes with the actin cytoskeleton and the actin binding protein, cortactin at the leading edge of the plasma membrane. We next wanted to assess the physiological significance of these findings by inhibiting dynamin GTPase activity using dynasore. We find that dynasore suppresses activation of ERK, but not c-Jun N-terminal kinase, after exposure to GnRH agonist. Furthermore, exposure of αT3–1 cells to dynasore inhibited GnRH-induced cyto-architectural rearrangements. Recently it has been discovered that GnRH induced Ca2+ influx via the L-type Ca2+ channels requires an intact cytoskeleton to mediate ERK phosphorylation. Interestingly, not only does dynasore attenuate GnRH-mediated actin reorganization, it also suppresses Ca2+ influx through L-type Ca2+ channels visualized in living cells using total internal reflection fluorescence microscopy. Collectively, our data suggest that GnRH-induced membrane remodeling events are mediated in part by the association of dynamin and cortactin engaging the actin cytoskeleton, which then regulates Ca2+ influx via L-type channels to facilitate ERK phosphorylation.


1999 ◽  
Vol 145 (6) ◽  
pp. 1251-1264 ◽  
Author(s):  
Avital A. Rodal ◽  
Jonathan W. Tetreault ◽  
Pekka Lappalainen ◽  
David G. Drubin ◽  
David C. Amberg

Actin interacting protein 1 (Aip1) is a conserved component of the actin cytoskeleton first identified in a two-hybrid screen against yeast actin. Here, we report that Aip1p also interacts with the ubiquitous actin depolymerizing factor cofilin. A two-hybrid–based approach using cofilin and actin mutants identified residues necessary for the interaction of actin, cofilin, and Aip1p in an apparent ternary complex. Deletion of the AIP1 gene is lethal in combination with cofilin mutants or act1-159, an actin mutation that slows the rate of actin filament disassembly in vivo. Aip1p localizes to cortical actin patches in yeast cells, and this localization is disrupted by specific actin and cofilin mutations. Further, Aip1p is required to restrict cofilin localization to cortical patches. Finally, biochemical analyses show that Aip1p causes net depolymerization of actin filaments only in the presence of cofilin and that cofilin enhances binding of Aip1p to actin filaments. We conclude that Aip1p is a cofilin-associated protein that enhances the filament disassembly activity of cofilin and restricts cofilin localization to cortical actin patches.


Sign in / Sign up

Export Citation Format

Share Document