scholarly journals Light Chain– dependent Regulation of Kinesin's Interaction with Microtubules

1998 ◽  
Vol 143 (4) ◽  
pp. 1053-1066 ◽  
Author(s):  
Kristen J. Verhey ◽  
Donna L. Lizotte ◽  
Tatiana Abramson ◽  
Linda Barenboim ◽  
Bruce J. Schnapp ◽  
...  

We have investigated the mechanism by which conventional kinesin is prevented from binding to microtubules (MTs) when not transporting cargo. Kinesin heavy chain (HC) was expressed in COS cells either alone or with kinesin light chain (LC). Immunofluorescence microscopy and MT cosedimentation experiments demonstrate that the binding of HC to MTs is inhibited by coexpression of LC. Association between the chains involves the LC NH2-terminal domain, including the heptad repeats, and requires a region of HC that includes the conserved region of the stalk domain and the NH2 terminus of the tail domain. Inhibition of MT binding requires in addition the COOH-terminal 64 amino acids of HC. Interaction between the tail and the motor domains of HC is supported by sedimentation experiments that indicate that kinesin is in a folded conformation. A pH shift from 7.2 to 6.8 releases inhibition of kinesin without changing its sedimentation behavior. Endogenous kinesin in COS cells also shows pH-sensitive inhibition of MT binding. Taken together, our results provide evidence that a function of LC is to keep kinesin in an inactive ground state by inducing an interaction between the tail and motor domains of HC; activation for cargo transport may be triggered by a small conformational change that releases the inhibition of the motor domain for MT binding.

2006 ◽  
Vol 173 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Elizabeth E. Glater ◽  
Laura J. Megeath ◽  
R. Steven Stowers ◽  
Thomas L. Schwarz

Mitochondria are distributed within cells to match local energy demands. We report that the microtubule-dependent transport of mitochondria depends on the ability of milton to act as an adaptor protein that can recruit the heavy chain of conventional kinesin-1 (kinesin heavy chain [KHC]) to mitochondria. Biochemical and genetic evidence demonstrate that kinesin recruitment and mitochondrial transport are independent of kinesin light chain (KLC); KLC antagonizes milton's association with KHC and is absent from milton–KHC complexes, and mitochondria are present in klc −/− photoreceptor axons. The recruitment of KHC to mitochondria is, in part, determined by the NH2 terminus–splicing variant of milton. A direct interaction occurs between milton and miro, which is a mitochondrial Rho-like GTPase, and this interaction can influence the recruitment of milton to mitochondria. Thus, milton and miro are likely to form an essential protein complex that links KHC to mitochondria for light chain–independent, anterograde transport of mitochondria.


2000 ◽  
Vol 113 (11) ◽  
pp. 2047-2054
Author(s):  
F.K. Gyoeva ◽  
E.M. Bybikova ◽  
A.A. Minin

Conventional kinesin is a motor protein implicated in the transport of a variety of cytoplasmic organelles along microtubules. The kinesin molecule consists of two heavy chains with motor domains at their amino termini and two light chains, which, together with the carboxyl termini of the heavy chains, are proposed to mediate binding to cargoes. Since the light chains are represented by multiple isoforms diverging at their carboxyl termini they are presumed to specify kinesin targeting to organelles. Previously, we isolated five cDNAs, encoding hamster kinesin light chain isoforms, and found that one of them (B or C) preferentially associated with mitochondria. To obtain additional evidence proving the specific location of various kinesin light chain isoforms on organelles, we made an antibody against a 56 amino-acid sequence found at the carboxyl-terminal regions of the hamster D and E isoforms. By indirect immunofluorescence, this antibody specifically labeled the Golgi complex in cultured cells. In western blots of total cell homogenates, it recognized two close polypeptides, one of which co-purified with the Golgi membranes. Thus, the results of this and previous studies demonstrate that different kinesin light chains are associated with different organelles in cells.


1997 ◽  
Vol 8 (4) ◽  
pp. 675-689 ◽  
Author(s):  
D L Stenoien ◽  
S T Brady

The kinesin heterotetramer consists of two heavy and two light chains. Kinesin light chains have been proposed to act in binding motor protein to cargo, but evidence for this has been indirect. A library of monoclonal antibodies directed against conserved epitopes throughout the kinesin light chain sequence were used to map light chain functional architecture and to assess physiological functions of these domains. Immunocytochemistry with all antibodies showed a punctate pattern that was detergent soluble. A monoclonal antibody (KLC-All) made against a highly conserved epitope in the tandem repeat domain of light chains inhibited fast axonal transport in isolated axoplasm by decreasing both the number and velocity of vesicles moving, whereas an antibody against a conserved amino terminus epitope had no effect. KLC-All was equally effective at inhibiting both anterograde and retrograde transport. Neither antibody inhibited microtubule-binding or ATPase activity in vitro. KLC-All was unique among antibodies tested in releasing kinesin from purified membrane vesicles, suggesting a mechanism of action for inhibition of axonal transport. These results provide further evidence that conventional kinesin is a motor for fast axonal transport and demonstrate that kinesin light chains play an important role in kinesin interaction with membranes.


Biochemistry ◽  
1998 ◽  
Vol 37 (47) ◽  
pp. 16663-16670 ◽  
Author(s):  
Russell J. Diefenbach ◽  
Joel P. Mackay ◽  
Patricia J. Armati ◽  
Anthony L. Cunningham

1999 ◽  
Vol 146 (6) ◽  
pp. 1277-1288 ◽  
Author(s):  
Amena Rahman ◽  
Adeela Kamal ◽  
Elizabeth A. Roberts ◽  
Lawrence S.B. Goldstein

Conventional kinesin, kinesin-I, is a heterotetramer of two kinesin heavy chain (KHC) subunits (KIF5A, KIF5B, or KIF5C) and two kinesin light chain (KLC) subunits. While KHC contains the motor activity, the role of KLC remains unknown. It has been suggested that KLC is involved in either modulation of KHC activity or in cargo binding. Previously, we characterized KLC genes in mouse (Rahman, A., D.S. Friedman, and L.S. Goldstein. 1998. J. Biol. Chem. 273:15395–15403). Of the two characterized gene products, KLC1 was predominant in neuronal tissues, whereas KLC2 showed a more ubiquitous pattern of expression. To define the in vivo role of KLC, we generated KLC1 gene-targeted mice. Removal of functional KLC1 resulted in significantly smaller mutant mice that also exhibited pronounced motor disabilities. Biochemical analyses demonstrated that KLC1 mutant mice have a pool of KIF5A not associated with any known KLC subunit. Immunofluorescence studies of sensory and motor neuron cell bodies in KLC1 mutants revealed that KIF5A colocalized aberrantly with the peripheral cis-Golgi marker giantin in mutant cells. Striking changes and aberrant colocalization were also observed in the intracellular distribution of KIF5B and β′-COP, a component of COP1 coatomer. Taken together, these data best support models that suggest that KLC1 is essential for proper KHC activation or targeting.


2014 ◽  
Vol 111 (7) ◽  
pp. 2638-2643 ◽  
Author(s):  
T. Morihara ◽  
N. Hayashi ◽  
M. Yokokoji ◽  
H. Akatsu ◽  
M. A. Silverman ◽  
...  

2003 ◽  
Vol 77 (17) ◽  
pp. 9192-9203 ◽  
Author(s):  
Louisa Benboudjema ◽  
Matthew Mulvey ◽  
Yuehua Gao ◽  
Sanjay W. Pimplikar ◽  
Ian Mohr

ABSTRACT The herpes simplex virus type 1 (HSV-1) Us11 gene encodes a multifunctional double-stranded RNA (dsRNA)-binding protein that is expressed late in infection and packaged into the tegument layer of the virus particle. As a tegument component, Us11 associates with nascent capsids after its synthesis late in the infectious cycle and is delivered into newly infected cells at times prior to the expression of viral genes. Us11 is also an abundant late protein that regulates translation through its association with host components and contains overlapping nucleolar retention and nuclear export signals, allowing its accumulation in both nucleoli and the cytosol. Thus, at various times during the viral life cycle and in different intracellular compartments, Us11 has the potential to execute discrete tasks. The analysis of these functions, however, is complicated by the fact that Us11 is not essential for viral replication in cultured cells. To discover new host targets for the Us11 protein, we searched for cellular proteins that interact with Us11 and have identified PAT1 as a Us11-binding protein according to multiple, independent experimental criteria. PAT1 binds microtubules, participates in amyloid precursor protein trafficking, and has homology to the kinesin light chain (KLC) in its carboxyl terminus. The carboxyl-terminal dsRNA-binding domain of Us11, which also contains the nucleolar retention and nuclear export signals, binds PAT1, whereas 149 residues derived from the KLC homology region of PAT1 are important for binding to Us11. Both PAT1 and Us11 colocalize within a perinuclear area in transiently transfected and HSV-1-infected cells. The 149 amino acids derived from the KLC homology region are required for colocalization of the two polypeptides. Furthermore, although PAT1 normally accumulates in the nuclear compartment, Us11 expression results in the exclusion of PAT1 from the nucleus and its accumulation in the perinuclear space. Similarly, Us11 does not accumulate in the nucleoli of infected cells that overexpress PAT1. These results establish that Us11 and PAT1 can associate, resulting in an altered subcellular distribution of both polypeptides. The association between PAT1, a cellular trafficking protein with homology to KLC, and Us11, along with a recent report demonstrating an interaction between Us11 and the ubiquitous kinesin heavy chain (R. J. Diefenbach et al., J. Virol. 76:3282-3291, 2002), suggests that these associations may be important for the intracellular movement of viral components.


2018 ◽  
Vol 293 (36) ◽  
pp. 13946-13960 ◽  
Author(s):  
T. Quyen Nguyen ◽  
Magali Aumont-Nicaise ◽  
Jessica Andreani ◽  
Christophe Velours ◽  
Mélanie Chenon ◽  
...  

1993 ◽  
Vol 120 (6) ◽  
pp. 1393-1403 ◽  
Author(s):  
C Ruppert ◽  
R Kroschewski ◽  
M Bähler

We have identified, characterized and cloned a novel mammalian myosin-I motor-molecule, called myr 1 (myosin-I from rat). Myr 1 exists in three alternative splice forms: myr 1a, myr 1b, and myr 1c. These splice forms differ in their numbers of putative calmodulin/light chain binding sites. Myr 1a-c were selectively released by ATP, bound in a nucleotide-dependent manner to F-actin and exhibited amino acid sequences characteristic of myosin-I motor domains. In addition to the motor domain, they contained a regulatory domain with up to six putative calmodulin/light chain binding sites and a tail domain. The tail domain exhibited 47% amino acid sequence identity to the brush border myosin-I tail domain, demonstrating that myr 1 is related to the only other mammalian myosin-I motor molecule that has been characterized so far. In contrast to brush border myosin-I which is expressed in mature enterocytes, myr 1 splice forms were differentially expressed in all tested tissues. Therefore, myr 1 is the first mammalian myosin-I motor molecule with a widespread tissue distribution in neonatal and adult tissues. The myr 1a splice form was preferentially expressed in neuronal tissues. Its expression was developmentally regulated during rat forebrain ontogeny and subcellular fractionation revealed an enrichment in purified growth cone particles, data consistent with a role for myr 1a in neuronal development.


Sign in / Sign up

Export Citation Format

Share Document