scholarly journals Essential control of an endothelial cell ISOC by the spectrin membrane skeleton

2001 ◽  
Vol 154 (6) ◽  
pp. 1225-1234 ◽  
Author(s):  
Songwei Wu ◽  
Jose Sangerman ◽  
Ming Li ◽  
George H. Brough ◽  
Steven R. Goodman ◽  
...  

Mechanism(s) underlying activation of store-operated Ca2+ entry currents, ISOC, remain incompletely understood. F-actin configuration is an important determinant of channel function, although the nature of interaction between the cytoskeleton and ISOC channels is unknown. We examined whether the spectrin membrane skeleton couples Ca2+ store depletion to Ca2+ entry. Thapsigargin activated an endothelial cell ISOC (−45 pA at −80 mV) that reversed at +40 mV, was inwardly rectifying when Ca2+ was the charge carrier, and was inhibited by La3+ (50 μM). Disruption of the spectrin–protein 4.1 interaction at residues A207-V445 of βSpIIΣ1 decreased the thapsigargin-induced global cytosolic Ca2+ response by 50% and selectively abolished the endothelial cell ISOC, without altering activation of a nonselective current through cyclic nucleotide–gated channels. In contrast, disruption of the spectrin–actin interaction at residues A47-K186 of βSpIIΣ1 did not decrease the thapsigargin-induced global cytosolic Ca2+ response or inhibit ISOC. Results indicate that the spectrin–protein 4.1 interaction selectively controls ISOC, indicating that physical coupling between calcium release and calcium entry is reliant upon the spectrin membrane skeleton.

2000 ◽  
Vol 279 (5) ◽  
pp. L815-L824 ◽  
Author(s):  
Natalie Norwood ◽  
Timothy M. Moore ◽  
David A. Dean ◽  
Rakesh Bhattacharjee ◽  
Ming Li ◽  
...  

We hypothesized that myosin light chain kinase (MLCK) links calcium release to activation of store-operated calcium entry, which is important for control of the endothelial cell barrier. Acute inhibition of MLCK caused calcium release from inositol trisphosphate-sensitive calcium stores and prevented subsequent activation of store-operated calcium entry by thapsigargin, suggesting that MLCK serves as an important mechanism linking store depletion to activation of membrane calcium channels. Moreover, in voltage-clamped single rat pulmonary artery endothelial cells, thapsigargin activated an inward calcium current that was abolished by MLCK inhibition. F-actin disruption activated a calcium current, and F-actin stabilization eliminated the thapsigargin-induced current. Thapsigargin increased endothelial cell permeability in the presence, but not in the absence, of extracellular calcium, indicating the importance of calcium entry in decreasing barrier function. Although MLCK inhibition prevented thapsigargin from stimulating calcium entry, it did not prevent thapsigargin from increasing permeability. Rather, inhibition of MLCK activity increased permeability that was especially prominent in low extracellular calcium. In conclusion, MLCK links store depletion to activation of a store-operated calcium entry channel. However, inhibition of calcium entry by MLCK is not sufficient to prevent thapsigargin from increasing endothelial cell permeability.


Diabetologia ◽  
2008 ◽  
Vol 51 (12) ◽  
pp. 2290-2298 ◽  
Author(s):  
Y. Zhang ◽  
N. Zhang ◽  
A. V. Gyulkhandanyan ◽  
E. Xu ◽  
H. Y. Gaisano ◽  
...  

2002 ◽  
Vol 283 (2) ◽  
pp. L297-L304 ◽  
Author(s):  
Larissa A. Shimoda ◽  
Laura E. Welsh ◽  
David B. Pearse

Endothelial barrier dysfunction is typically triggered by increased intracellular Ca2+concentration. Membrane-permeable analogs of guanosine 3′,5′-cyclic monophosphate (cGMP) prevent disruption of endothelial cell integrity. Because membrane potential ( E m), which influences the electrochemical gradient for Ca2+ influx, is regulated by K+ channels, we investigated the effect of 8-bromo-cGMP on E m and inwardly rectifying K+ (KIR) currents in bovine pulmonary artery and microvascular endothelial cells (BPAEC and BMVEC), using whole cell patch-clamp techniques. Both cell types exhibited inward currents at potentials negative to −50 mV that were abolished by application of 10 μM Ba2+, consistent with KIR current. Ba2+ also depolarized both cell types. 8-Bromo-cGMP (10−3 M) depolarized BPAEC and BMVEC and inhibited KIR current. Pretreatment with Rp-8-cPCT-cGMPS or KT-5823, protein kinase G (PKG) antagonists, did not prevent current inhibition by 8-bromo-cGMP. These data suggest that 8-bromo-cGMP induces depolarization in BPAEC and BMVEC due, in part, to PKG-independent inhibition of KIR current. The depolarization could be a protective mechanism that prevents endothelial cell barrier dysfunction by reducing the driving force for Ca2+ entry.


Sign in / Sign up

Export Citation Format

Share Document