scholarly journals Localized Ca2+ uncaging reveals polarized distribution of Ca2+-sensitive Ca2+ release sites

2002 ◽  
Vol 158 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Michael C. Ashby ◽  
Madeleine Craske ◽  
Myoung Kyu Park ◽  
Oleg V. Gerasimenko ◽  
Robert D. Burgoyne ◽  
...  

Ca2+-induced Ca2+ release (CICR) plays an important role in the generation of cytosolic Ca2+ signals in many cell types. However, it is inherently difficult to distinguish experimentally between the contributions of messenger-induced Ca2+ release and CICR. We have directly tested the CICR sensitivity of different regions of intact pancreatic acinar cells using local uncaging of caged Ca2+. In the apical region, local uncaging of Ca2+ was able to trigger a CICR wave, which propagated toward the base. CICR could not be triggered in the basal region, despite the known presence of ryanodine receptors. The triggering of CICR from the apical region was inhibited by a pharmacological block of ryanodine or inositol trisphosphate receptors, indicating that global signals require coordinated Ca2+ release. Subthreshold agonist stimulation increased the probability of triggering CICR by apical uncaging, and uncaging-induced CICR could activate long-lasting Ca2+ oscillations. However, with subthreshold stimulation, CICR could still not be initiated in the basal region. CICR is the major process responsible for global Ca2+ transients, and intracellular variations in sensitivity to CICR predetermine the activation pattern of Ca2+ waves.

2003 ◽  
Vol 369 (3) ◽  
pp. 441-445 ◽  
Author(s):  
Michael C. ASHBY ◽  
Ole H. PETERSEN ◽  
Alexei V. TEPIKIN

In pancreatic acinar cells, agonists evoke intracellular Ca2+ transients which are initiated in the apical region of these polarized cells. There are contradictory experimental data concerning Ca2+ release from ryanodine receptors (RyRs) in the apical region. In the present study, we have used low doses of ryanodine to open RyRs leading to the release of Ca2+ from intracellular stores. Ryanodine causes Ca2+ release that is initiated in the apical region of the cell but is dependent upon functional inositol 1,4,5-trisphosphate receptors (IP3Rs). These results suggests that co-ordinated release from co-localized RyRs and IP3Rs underlies the increased sensitivity of the apical region to initiation of intracellular Ca2+ transients.


1999 ◽  
Vol 276 (1) ◽  
pp. G271-G279 ◽  
Author(s):  
David I. Yule ◽  
Christopher W. Baker ◽  
John A. Williams

Stimulus-secretion coupling in the pancreatic acinar cell is initiated by the secretagogues CCK and ACh and results in the secretion by exocytosis of the contents of zymogen granules. A key event in this pathway is the G protein-activated production of second messengers and the subsequent elevation of cytosolic-free Ca2+. The aim of this study was therefore to define the heterotrimeric G protein α-subunits present and participating in this pathway in rat pancreatic acinar cells. RT-PCR products were amplified from pancreatic acinar cell mRNA with primers specific for Gαq, Gα11, and Gα14 but were not amplified with primers specific for Gα15. The sequences of these PCR products confirmed them to be portions of the rat homologues of Gαq, Gα11, and Gα14. The pancreatic-derived cell line AR42J similarly expressed Gαq, Gα11, and Gα14; however, the Chinese hamster ovary (CHO) cell line only expressed Gα11 and Gαq. These data indicate that caution should be exercised when comparing signal transduction pathways between different cell types. The expression of these proteins in acinar cells was confirmed by immunoblotting samples of acinar membrane protein using specific antisera to the individual G protein α-subunits. The role of these proteins in Ca2+ signaling events was investigated by microinjecting a neutralizing antibody directed against a homologous sequence in Gαq, Gα11, and Gα14 into acinar cells and CHO cells. Ca2+ signaling was inhibited in acinar cells and receptor-bearing CHO cells in response to both physiological and supermaximal concentrations of agonists. The inhibition was >75% in both cell types. These data indicate a role for Gαq and/or Gα11 in intracellular Ca2+ concentration signaling in CHO cells, and in addition to Gαq and Gα11, Gα14 may also fulfill this role in rat pancreatic acinar cells.


2007 ◽  
Vol 293 (6) ◽  
pp. G1333-G1338 ◽  
Author(s):  
Svetlana G. Voronina ◽  
Mark W. Sherwood ◽  
Oleg V. Gerasimenko ◽  
Ole H. Petersen ◽  
Alexei V. Tepikin

Here we describe a technique that allows us to visualize in real time the formation and dynamics (fusion, changes of shape, and translocation) of vacuoles in living cells. The technique involves infusion of a dextran-bound fluorescent probe into the cytosol of the cell via a patch pipette, using the whole-cell patch-clamp configuration. Experiments were conducted on pancreatic acinar cells stimulated with supramaximal concentrations of cholecystokinin (CCK). The vacuoles, forming in the cytoplasm of the cell, were revealed as dark imprints on a bright fluorescence background, produced by the probe and visualized by confocal microscopy. A combination of two dextran-bound probes, one infused into the cytosol and the second added to the extracellular solution, was used to identify endocytic and nonendocytic vacuoles. The cytosolic dextran-bound probe was also used together with a Golgi indicator to illustrate the possibility of combining the probes and identifying the localization of vacuoles with respect to other cellular organelles in pancreatic acinar cells. Combinations of cytosolic dextran-bound probes with endoplasmic reticulum (ER) or mitochondrial probes were also used to simultaneously visualize vacuoles and corresponding organelles. We expect that the new technique will also be applicable and useful for studies of vacuole dynamics in other cell types.


1993 ◽  
Vol 184 (1) ◽  
pp. 129-144
Author(s):  
P. Thorn

Secretory cells do not only respond to an agonist with a simple rise in [Ca2+]i. It is now clear that complex patterns of [Ca2+]i elevation in terms of space and time are observed in many cell types and that these patterns may be a cellular mechanism for the regulation of different responses. Ca2+ signalling in exocrine cells of the pancreas promotes the secretion of digestive enzymes and fluid. It has been shown that at high concentrations of agonist (acetylcholine or cholecystokinin) the [Ca2+]i response is initiated in the secretory pole of the cell before spreading across the whole cell. This site of initiation of the [Ca2+]i elevation is in the region where exocytotic release of enzymes occurs and is also the site of a Ca(2+)-dependent chloride channel thought to be crucially important for fluid secretion. Lower concentrations of agonist elicit [Ca2+]i oscillations with complex repetitive patterns characteristic of each agonist. At physiological agonist concentrations, we have recently described repetitive short-lasting Ca2+ spikes that are spatially restricted to the secretory pole of the cell. In addition to these spikes, cholecystokinin also promotes slow transient Ca2+ rises that result in a global rise in Ca2+. The inositol trisphosphate (InsP3) receptor plays a crucial role in all of these various agonist responses, most of which can be reproduced by the infusion of InsP3 into the cell. The high InsP3-sensitivity of the secretory pole is postulated to be due to a localization of high-affinity InsP3 receptors. We speculate that in response to cholecystokinin the short-lasting spikes elicit exocytosis from a small ‘available pool’ of vesicles and that the broader oscillations induce both exocytosis and cell changes that involve movement of vesicles into this ‘available pool’.


2016 ◽  
Author(s):  
Damian Wollny ◽  
Sheng Zhao ◽  
Ana Martin-Villalba

Single cell RNA sequencing technology has emerged as a promising tool to uncover previously neglected cellular heterogeneity. Multiple methods and protocols have been developed to apply single cell sequencing to different cell types from various organs. However, library preparation for RNA sequencing remains challenging for cell types with high RNAse content due to rapid degradation of endogenous RNA molecules upon cell lysis. To this end, we developed a protocol based on the SMART-seq2 technology for single cell RNA sequencing of pancreatic acinar cells, the cell type with one of the highest ribonuclease concentration measured to date. This protocol reliably produces high quality libraries from single acinar cells reaching a total of 5x106 reads / cell and ∼ 80% transcript mapping rate with no detectable 3´end bias. Thus, our protocol makes single cell transcriptomics accessible to cell type with very high RNAse content.


2016 ◽  
Vol 310 (6) ◽  
pp. G399-G409 ◽  
Author(s):  
Keitaro Satoh ◽  
Takanori Narita ◽  
Osamu Katsumata-Kato ◽  
Hiroshi Sugiya ◽  
Yoshiteru Seo

Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.


1994 ◽  
Vol 304 (1) ◽  
pp. 313-316 ◽  
Author(s):  
E C Toescu ◽  
D V Gallacher ◽  
O H Petersen

The initial increase of intracellular free Ca2+ concentration ([Ca2+]i) following agonist stimulation is spatially restricted to one pole of the cell, from where a wave of [Ca2+]i spreads across the cytosol. In the present study we have investigated the dynamic properties of the agonist-activated Ca(2+)-release mechanisms in different regions of the acinar cell and show that, during maximal agonist stimulation, the rate of [Ca2+]i increase at the secretory pole is identical with that recorded at the basal pole. Furthermore, the relationship between [Ca2+]i and the apparent rate of [Ca2+]i increase is similar in both regions of the cell. The data show that whereas the sensitivity to the Ca(2+)-releasing agent is different in different regions of the cell, the process of [Ca2+]i increase, once triggered, will proceed in an identical fashion, irrespective of the area of the cell.


1995 ◽  
Vol 311 (2) ◽  
pp. 649-656 ◽  
Author(s):  
P Gilon ◽  
J F Obie ◽  
X Bian ◽  
G S J Bird ◽  
J W Putney

We have investigated the possible roles of cyclic GMP (cGMP) in initiating or regulating capacitiative Ca2+ entry in rat pancreatic acinar cells. In medium containing 1.8 mM external Ca2+, thapsigargin activated Ca2+ entry and slightly but significantly increased intracellular cGMP concentration. This rise in cGMP levels was prevented by pretreating the cells with the guanylate cyclase inhibitor, LY-83583, or by omitting Ca2+ during stimulation by thapsigargin or methacholine. LY-83583 and NG-nitro-L-arginine (L-NA, an inhibitor of NO synthase) both had a small inhibitory effect on Ca2+ entry when they were added after thapsigargin in Ca2(+)-containing medium, and they reduced by 32 and 48% respectively the thapsigargin-induced capacitative Ca2+ entry when added to the cells during a 20 min preincubation period. However, neither dibutyryl cGMP (Bt2cGMP) nor sodium nitroprusside, an NO mimic, affected either basal intracellular Ca2+ concentration [Ca2+]i or thapsigargin-induced capacitative Ca2+ entry. Further, the inhibitory effects observed after preincubation with LY-83583 or L-NA could not be prevented by preincubation with Bt2cGMP, nor could they be reversed by adding Bt2cGMP, 8-bromo-cGMP or sodium nitroprusside acutely after activation of capacitative Ca2+ entry by thapsigargin. Finally, pretreatment of cells with LY-83583 or L-NA did not affect Ca2+ signalling in response to 1 microM methacholine, including the pattern of [Ca2+]i oscillations. In conclusion, in pancreatic acinar cells, the rise in cellular cGMP levels appears to depend on, rather than cause, the increase in [Ca2+]i with agonist stimulation.


2003 ◽  
Vol 285 (5) ◽  
pp. C1142-C1149 ◽  
Author(s):  
Seon Ah Chong ◽  
Soo Young Hong ◽  
Seok Jun Moon ◽  
Jee Won Park ◽  
Jeong-Hee Hong ◽  
...  

AlF4-is known to generate oscillations in intracellular Ca2+ concentration ([Ca2+]i) by activating G proteins in many cell types. However, in rat pancreatic acinar cells, AlF4--evoked [Ca2+]i oscillations were reported to be dependent on extracellular Ca2+, which contrasts with the [Ca2+]i oscillations induced by cholecystokinin (CCK). Therefore, we investigated the mechanisms by which AlF4- generates extracellular Ca2+-dependent [Ca2+]i oscillations in rat pancreatic acinar cells. AlF4--induced [Ca2+]i oscillations were stopped rapidly by the removal of extracellular Ca2+ and were abolished on the addition of 20 mM caffeine and 2 μM thapsigargin, indicating that Ca2+ influx plays a crucial role in maintenance of the oscillations and that an inositol 1,4,5-trisphosphate-sensitive Ca2+ store is also required. The amount of Ca2+ in the intracellular Ca2+ store was decreased as the AlF4--induced [Ca2+]i oscillations continued. Measurement of 45Ca2+ influx into isolated microsomes revealed that AlF4-directly inhibited sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). The activity of plasma membrane Ca2+-ATPase during AlF4- stimulation was not significantly different from that during CCK stimulation. After partial inhibition of SERCA with 1 nM thapsigargin, 20 pM CCK-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+. This study shows that AlF4- induces [Ca2+]i oscillations, probably by inositol 1,4,5-trisphosphate production via G protein activation but that these oscillations are strongly dependent on extracellular Ca2+ as a result of the partial inhibition of SERCA.


Sign in / Sign up

Export Citation Format

Share Document