scholarly journals Persistence of apoptotic cells without autoimmune disease or inflammation in CD14−/− mice

2004 ◽  
Vol 167 (6) ◽  
pp. 1161-1170 ◽  
Author(s):  
Andrew Devitt ◽  
Kate G. Parker ◽  
Carol Anne Ogden ◽  
Ceri Oldreive ◽  
Michael F. Clay ◽  
...  

Interaction of macrophages with apoptotic cells involves multiple steps including recognition, tethering, phagocytosis, and anti-inflammatory macrophage responses. Defective apoptotic cell clearance is associated with pathogenesis of autoimmune disease. CD14 is a surface receptor that functions in vitro in the removal of apoptotic cells by human and murine macrophages, but its mechanism of action has not been defined. Here, we demonstrate that CD14 functions as a macrophage tethering receptor for apoptotic cells. Significantly, CD14−/− macrophages in vivo are defective in clearing apoptotic cells in multiple tissues, suggesting a broad role for CD14 in the clearance process. However, the resultant persistence of apoptotic cells does not lead to inflammation or increased autoantibody production, most likely because, as we show, CD14−/− macrophages retain the ability to generate anti-inflammatory signals in response to apoptotic cells. We conclude that CD14 plays a broad tethering role in apoptotic cell clearance in vivo and that apoptotic cells can persist in the absence of proinflammatory consequences.

Author(s):  
Emma Louise Armitage ◽  
Hannah Grace Roddie ◽  
Iwan Robert Evans

AbstractApoptotic cell clearance by phagocytes is a fundamental process during development, homeostasis and the resolution of inflammation. However, the demands placed on phagocytic cells such as macrophages by this process, and the limitations these interactions impose on subsequent cellular behaviours are not yet clear. Here we seek to understand how apoptotic cells affect macrophage function in the context of a genetically-tractable Drosophila model in which macrophages encounter excessive amounts of apoptotic cells. We show that loss of the glial transcription factor repo, and corresponding removal of the contribution these cells make to apoptotic cell clearance, causes macrophages in the developing embryo to be challenged with large numbers of apoptotic cells. As a consequence, macrophages become highly vacuolated with cleared apoptotic cells and their developmental dispersal and migration is perturbed. We also show that the requirement to deal with excess apoptosis caused by a loss of repo function leads to impaired inflammatory responses to injury. However, in contrast to migratory phenotypes, defects in wound responses cannot be rescued by preventing apoptosis from occurring within a repo mutant background. In investigating the underlying cause of these impaired inflammatory responses, we demonstrate that wound-induced calcium waves propagate into surrounding tissues, including neurons and glia of the ventral nerve cord, which exhibit striking calcium waves on wounding, revealing a previously unanticipated contribution of these cells during responses to injury. Taken together these results demonstrate important insights into macrophage biology and how repo mutants can be used to study macrophage-apoptotic cell interactions in the fly embryo.Furthermore, this work shows how these multipurpose cells can be ‘overtasked’ to the detriment of their other functions, alongside providing new insights into which cells govern macrophage responses to injury in vivo.


2020 ◽  
Author(s):  
Zachary I. Blume ◽  
Jared M. Lambert ◽  
Anna G. Lovel ◽  
Diana M. Mitchell

AbstractBackgroundMicroglia colonize the developing vertebrate central nervous system coincident with detection of developmental apoptosis. Our understanding of apoptosis in intact tissue in relation to microglial clearance of dying cells is largely based on fixed samples, which is limiting given that microglia are highly motile and mobile phagocytes. Here, we used a system of microglial depletion and in vivo real-time imaging in zebrafish to directly address microglial phagocytosis of apoptotic cells during normal retinal development, the relative timing of phagocytosis in relation to apoptotic progression, and the contribution of P2RY12 signaling to this process.ResultsDepletion of microglia resulted in accumulation of numerous apoptotic cells in the retina. Real-time imaging revealed precise timing of microglial engulfment with the progression of apoptosis, and dynamic movement and displacement of engulfed apoptotic cells. Inhibition of P2RY12 signaling delayed microglial clearance of apoptotic cells.ConclusionsMicroglial engulfment of dying cells is coincident with apoptotic progression and requires P2RY12 signaling, indicating that microglial P2RY12 signaling is shared between development and injury response. Our work provides important in vivo insight into the dynamics of apoptotic cell clearance in the developing vertebrate retina and provides a basis to understand microglial phagocytic behavior in health and disease.Bullet PointsLevels and location of developmental apoptosis in the zebrafish retina are elusive due to rapid and efficient clearance by microgliaMicroglial clearance of apoptotic cells is timed with the progression of apoptosis of the engulfed cell so that many cells are cleared in relatively early apoptotic stagesP2RY12 signaling is involved in microglial sensing and clearance of cells undergoing normal developmental apoptosis, indicating shared signals in microglial responses to cell death in both healthy and injured tissueGrant SponsorsNIH NIGMS Grant No. P20 GM103408


2015 ◽  
Vol 112 (34) ◽  
pp. 10774-10779 ◽  
Author(s):  
Buvana Ravishankar ◽  
Haiyun Liu ◽  
Rahul Shinde ◽  
Kapil Chaudhary ◽  
Wei Xiao ◽  
...  

Efficient apoptotic cell clearance and induction of immunologic tolerance is a critical mechanism preventing autoimmunity and associated pathology. Our laboratory has reported that apoptotic cells induce tolerance by a mechanism dependent on the tryptophan catabolizing enzyme indoleamine 2,3 dioxygenase 1 (IDO1) in splenic macrophages (MΦ). The metabolic-stress sensing protein kinase GCN2 is a primary downstream effector of IDO1; thus, we tested its role in apoptotic cell-driven immune suppression. In vitro, expression of IDO1 in MΦs significantly enhanced apoptotic cell-driven IL-10 and suppressed IL-12 production in a GCN2-dependent mechanism. Suppression of IL-12 protein production was due to attenuation of IL-12 mRNA association with polyribosomes inhibiting translation while IL-10 mRNA association with polyribosomes was not affected. In vivo, apoptotic cell challenge drove a rapid, GCN2-dependent stress response in splenic MΦs with increased IL-10 and TGF-β production, whereas myeloid-specific deletion of GCN2 abrogated regulatory cytokine production with provocation of inflammatory T-cell responses to apoptotic cell antigens and failure of long-tolerance induction. Consistent with a role in prevention of apoptotic cell driven autoreactivity, myeloid deletion of GCN2 in lupus-prone mice resulted in increased immune cell activation, humoral autoimmunity, renal pathology, and mortality. In contrast, activation of GCN2 with an agonist significantly reduced anti-DNA autoantibodies and protected mice from disease. Thus, this study implicates a key role for GCN2 signals in regulating the tolerogenic response to apoptotic cells and limiting autoimmunity.


2000 ◽  
Vol 192 (3) ◽  
pp. 359-366 ◽  
Author(s):  
Philip R. Taylor ◽  
Anna Carugati ◽  
Valerie A. Fadok ◽  
H. Terence Cook ◽  
Mark Andrews ◽  
...  

The strongest susceptibility genes for the development of systemic lupus erythematosus (SLE) in humans are null mutants of classical pathway complement proteins. There is a hierarchy of disease susceptibility and severity according to the position of the missing protein in the activation pathway, with the severest disease associated with C1q deficiency. Here we demonstrate, using novel in vivo models of apoptotic cell clearance during sterile peritonitis, a similar hierarchical role for classical pathway complement proteins in vivo in the clearance of apoptotic cells by macrophages. Our results constitute the first demonstration of an impairment in the phagocytosis of apoptotic cells by macrophages in vivo in a mammalian system. Apoptotic cells are thought to be a major source of the autoantigens of SLE, and impairment of their removal by complement may explain the link between hereditary complement deficiency and the development of SLE.


PLoS Biology ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. e3001259
Author(s):  
Sergio M. Pontejo ◽  
Philip M. Murphy

Removal of apoptotic cells is essential for maintenance of tissue homeostasis. Chemotactic cues termed “find-me” signals attract phagocytes toward apoptotic cells, which selectively expose the anionic phospholipid phosphatidylserine (PS) and other “eat-me” signals to distinguish healthy from apoptotic cells for phagocytosis. Blebs released by apoptotic cells can deliver find-me signals; however, the mechanism is poorly understood. Here, we demonstrate that apoptotic blebs generated in vivo from mouse thymus attract phagocytes using endogenous chemokines bound to the bleb surface. We show that chemokine binding to apoptotic cells is mediated by PS and that high affinity binding of PS and other anionic phospholipids is a general property of many but not all chemokines. Chemokines are positively charged proteins that also bind to anionic glycosaminoglycans (GAGs) on cell surfaces for presentation to leukocyte G protein–coupled receptors (GPCRs). We found that apoptotic cells down-regulate GAGs as they up-regulate PS on the cell surface and that PS-bound chemokines, unlike GAG-bound chemokines, are able to directly activate chemokine receptors. Thus, we conclude that PS-bound chemokines may serve as find-me signals on apoptotic vesicles acting at cognate chemokine receptors on leukocytes.


2004 ◽  
Vol 199 (8) ◽  
pp. 1121-1131 ◽  
Author(s):  
Tamar Aprahamian ◽  
Ian Rifkin ◽  
Ramon Bonegio ◽  
Bénédicte Hugel ◽  
Jean-Marie Freyssinet ◽  
...  

To clarify the link between autoimmune disease and hypercholesterolemia, we created the gld.apoE−/− mouse as a model of accelerated atherosclerosis. Atherosclerotic lesion area was significantly increased in gld.apoE−/− mice compared with apoE−/− mice. gld.apoE−/− mice also displayed increases in lymphadenopathy, splenomegaly, and autoantibodies compared with gld mice, and these effects were exacerbated by high cholesterol diet. gld.apoE−/− mice exhibited higher levels of apoptotic cells, yet a reduced frequency of engulfed apoptotic nuclei within macrophages. Infusion of lysophosphatidylcholine, a component of oxidized low density lipoprotein, markedly decreased apoptotic cell clearance in gld mice, indicating that hypercholesterolemia promotes autoimmune disease in this background. These data suggest that defects in apoptotic cell clearance promote synergy between atherosclerotic and autoimmune diseases.


2020 ◽  
Author(s):  
Sergio M. Pontejo ◽  
Philip M. Murphy

AbstractChemokines are positively charged cytokines that attract leukocytes by binding to anionic glycosaminoglycans (GAGs) on endothelial cells for efficient presentation to leukocyte G protein-coupled receptors (GPCRs). The atypical chemokine CXCL16 has been reported to also bind the anionic phospholipid phosphatidylserine (PS), but the biological relevance of this interaction remains poorly understood. Here we demonstrate that PS binding is in fact a widely shared property of chemokine superfamily members that, like GAG binding, induces chemokine oligomerization. PS is an essential phospholipid of the inner leaflet of the healthy cell plasma membrane but it is exposed in apoptotic cells to act as an ‘eat-me’ signal that promotes engulfment of dying cells by phagocytes. We found that chemokines can bind PS in pure form as well as in the context of liposomes and on the surface of apoptotic cells and extracellular vesicles released by apoptotic cells, which are known to act as ‘find-me’ signals that chemoattract phagocytes during apoptotic cell clearance. Importantly, we show that GAGs are severely depleted from the surface of apoptotic cells and that extracellular vesicles extracted from apoptotic mouse thymus bind endogenous thymic chemokines and activate cognate chemokine receptors. Together these results indicate that chemokines tethered to surface-exposed PS may be responsible for the chemotactic and find-me signal activity previously attributed to extracellular vesicles, and that PS may substitute for GAGs as the anionic scaffold that regulates chemokine oligomerization and presentation to GPCRs on the GAG-deficient membranes of apoptotic cells and extracellular vesicles. Here, we present a new mechanism by which extracellular vesicles, currently recognized as essential agents for intercellular communication in homeostasis and disease, can transport signaling cytokines.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Ji Yeon Byun ◽  
Young-So Youn ◽  
Ye-Ji Lee ◽  
Youn-Hee Choi ◽  
So-Yeon Woo ◽  
...  

Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cellsin vitroandin vivoorchestrate the interaction between COX-2/PGE2and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2production. Both NS-398 and COX-2-siRNA, as well as the PGE2receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2induction. Thein vivorelevance of the interaction between the COX-2/PGE2and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages followingin vivoexposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.


2005 ◽  
Vol 202 (2) ◽  
pp. 321-331 ◽  
Author(s):  
Sean R. Christensen ◽  
Michael Kashgarian ◽  
Lena Alexopoulou ◽  
Richard A. Flavell ◽  
Shizuo Akira ◽  
...  

Systemic autoimmune disease in humans and mice is characterized by loss of immunologic tolerance to a restricted set of self-nuclear antigens. Autoantigens, such as double-stranded (ds) DNA and the RNA-containing Smith antigen (Sm), may be selectively targeted in systemic lupus erythematosus because of their ability to activate a putative common receptor. Toll-like receptor 9 (TLR9), a receptor for CpG DNA, has been implicated in the activation of autoreactive B cells in vitro, but its role in promoting autoantibody production and disease in vivo has not been determined. We show that in TLR9-deficient lupus-prone mice, the generation of anti-dsDNA and antichromatin autoantibodies is specifically inhibited. Other autoantibodies, such as anti-Sm, are maintained and even increased in TLR9-deficient mice. In contrast, ablation of TLR3, a receptor for dsRNA, did not inhibit the formation of autoantibodies to either RNA- or DNA-containing antigens. Surprisingly, we found that despite the lack of anti-dsDNA autoantibodies in TLR9-deficient mice, there was no effect on the development of clinical autoimmune disease or nephritis. These results demonstrate a specific requirement for TLR9 in autoantibody formation in vivo and indicate a critical role for innate immune activation in autoimmunity.


2010 ◽  
Vol 207 (9) ◽  
pp. 1807-1817 ◽  
Author(s):  
Kodi S. Ravichandran

Everyday we turnover billions of cells. The quick, efficient, and immunologically silent disposal of the dying cells requires a coordinated orchestration of multiple steps, through which phagocytes selectively recognize and engulf apoptotic cells. Recent studies have suggested an important role for soluble mediators released by apoptotic cells that attract phagocytes (“find-me” signals). New information has also emerged on multiple receptors that can recognize phosphatidylserine, the key “eat-me” signal exposed on the surface of apoptotic cells. This perspective discusses recent exciting progress, gaps in our understanding, and the conflicting issues that arise from the newly acquired knowledge.


Sign in / Sign up

Export Citation Format

Share Document