scholarly journals Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis

2007 ◽  
Vol 179 (4) ◽  
pp. 701-715 ◽  
Author(s):  
Bernhard Gillissen ◽  
Frank Essmann ◽  
Philipp G. Hemmati ◽  
Antje Richter ◽  
Anja Richter ◽  
...  

B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)–only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1–Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.

2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Larissa Ewald ◽  
Jessica Dittmann ◽  
Meike Vogler ◽  
Simone Fulda

AbstractDespite advances in the treatment of acute myeloid leukemia (AML), prognosis of AML patients is still dismal and better treatment options are required. B-cell Lymphoma 2 (BCL-2) homology domain 3 (BH3)-mimetics are emerging as a novel class of apoptosis-inducing agents that are currently being tested for the treatment of different hematological malignancies including AML. Particularly, the selective BCL-2 inhibitor ABT-199/Venetoclax is demonstrating clinical responses and has recently been approved in combination for the treatment of AML. Compounds targeting the related protein MCL-1 have recently entered clinical trials, highlighting the urgency to compare the different BH3-mimetics and identify the most promising antiapoptotic target in AML. We performed a side-by-side comparison of different highly selective and potent BH3-mimetics targeting BCL-2 (ABT-199), MCL-1 (S63845) or BCL-xL (A1331852) in a panel of AML cell lines and primary patient cells. Gene knockdown using siRNAs was utilized to investigate the functional relevance of BCL-2 proteins. Western blotting and immunoprecipitations were used to explore the influence of BH3-mimetics on interactions between pro- and antiapoptotic BCL-2 proteins. A1331852 induced apoptosis only in selected cases, indicating that BCL-xL is not a very promising therapeutic target in AML. However, S63845 displayed higher potency than ABT-199, with more cell lines and primary cells responding to S63845 than to ABT-199. MCL-1 dependency in AML cells was confirmed by siRNA-mediated knockdown of MCL-1, which was sufficient to induce apoptosis. S63845-induced cell death was accompanied by a displacement of the BH3-only protein BIM as well as BAK, resulting in BAK-dependent apoptosis. In contrast, ABT-199-induced cell death was mediated by BAX rather than BAK, indicating distinct non-redundant molecular functions of BCL-2 and MCL-1 in AML. Our study reveals that MCL-1 may be a more prevalent therapeutic target than BCL-2 in AML and identifies BIM and BAK as important mediators of S63845-induced apoptosis in AML.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 1100-1107 ◽  
Author(s):  
Peter T. Daniel ◽  
Kwok-Tao Pun ◽  
Silke Ritschel ◽  
Isrid Sturm ◽  
Jutta Holler ◽  
...  

Members of the Bcl-2 gene family have been implicated in the regulation of cell death induced by cytostatic drugs. In some malignancies such as B-cell lymphoma, there is evidence that high expression of Bcl-2 is an independent negative prognostic marker and the overexpression of Bcl-2 has been shown to confer resistance to cytotoxic drugs by preventing drug-induced apoptosis. This function of Bcl-2 can be antagonized by apoptosis-promoting members of the Bcl-2 family. We previously showed that overexpression of Bax restores the chemosensitivity of Bax-deficient breast cancer cell lines. Therefore, we investigated whether the death-promoting Bcl-2 homologue Bik/Nbk can enhance cytostatic drug-induced apoptosis. As a model, we used the T-cell leukemia H9 (CD3+ and CD4+CD8−), which is resistant to corticosteroid-induced cell death and does not express endogenous Bik/Nbk. Sensitivity for drug-induced apoptosis was increased 10- to 39-fold in cells transfected with the full-length coding sequence of Bik/Nbk. In addition, apoptosis induced via CD95/Fas or heat shock was increased to a similar extent. These data show that Bik/Nbk, which, unlike Bax, carries only a BH3 but no BH1 or BH2 domain may be a target to enhance chemosensitivity. The complete suppression of tumor growth in a severe combined immunodeficient mouse xenotransplant model suggests that, in analogy to Bax, Bik/Nbk may function as a tumor suppressor gene.


Biologia ◽  
2015 ◽  
Vol 70 (6) ◽  
Author(s):  
Namita Mitra ◽  
Ramneek Verma ◽  
Dipak Deka ◽  
Hitesh N. Pawar ◽  
Naresh K. Sood ◽  
...  

AbstractB-cell lymphoma 2 (Bcl-2) and heat shock protein (HSP) families are implicated in various processes of carcinogenesis, owing to their role in regulation of apoptosis and cell cycle, respectively. mRNA expression of Bcl-2, myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma-extra-large (Bcl-xl), Bcl2-associated X (Bax), HSP70 and HSP90-β genes were studied in 30 clinical canine mammary tumors (CMTs). Histological ‘type’ and ‘grade’ were assigned to CMTs and expression was evaluated by SYBR-Green real-time PCR assay. Overall, the tumors exhibited the maximum expression of Bcl-2 amongst the Bcl-2 family members. Sarcoma and carcinosarcoma showed relatively higher expression of Mcl-1, whereas Bcl-2 was over-expressed in carcinoma. In relation to the cancer grades, Bcl-2/Bax ratio tend to increase as the tumor differentiation progressed from well to poorly differentiated. HSP90-β exhibited significantly high expression in carcinoma, carcinosarcoma and all grades of CMTs were suggestive of their elemental role in tumor progression. In conclusion, this study underpins the conjecture that Bcl-2, Mcl-1 and HSP90-β can be used as potential targets of inhibition in future mammary tumor therapeutics.


2011 ◽  
Vol 83 (3) ◽  
pp. 723-731 ◽  
Author(s):  
Paul H. Bernardo ◽  
Thirunavukkarasu Sivaraman ◽  
Kah-Fei Wan ◽  
Jin Xu ◽  
Janarthanan Krishnamoorthy ◽  
...  

A small library of pyridine-based rhodanine analogues of BH3I-1 were synthesized and screened against B-cell lymphoma-extra large (Bcl-XL) and myeloid cell leukemia sequence 1 (Mcl-1) for the ability to displace 5-carboxyfluorescein-labeled Bak peptide (Flu-Bak). Differences in selectivity toward Bcl-XL and Mcl-1 were observed, and the binding modes of selected compounds were studied further. The results may be useful in designing potent small-molecule inhibitors of Bcl-XL and Mcl-1 as well as selective Mcl-1 inhibitors.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 920-920
Author(s):  
Frank K Braun ◽  
Rohit Mathur ◽  
Lalit Sehgal ◽  
Rachel Wilkie-Grantham ◽  
Joya Chandra ◽  
...  

Abstract Introduction Non-Hodgkin lymphomas (NHLs) are characterized by specific abnormalities that alter cell cycle regulation, DNA damage response, and apoptotic signaling. Cancer cells can be particularly sensitive to cell death induced by tumor necrosis factor a–related apoptosis-inducing ligand (TRAIL). However, many cancer cells show blocked TRAIL signaling because up-regulated expression of anti-apoptotic factors such as cFLIP. Thus, by further understanding the underpinnings of apoptosis resistance, we will be in a better position to develop strategies that improve TRAIL-induced killing of lymphoma cells. Methods/Results NHL cell lines, including mantle cell lymphoma (MCL; Mino, JeKo-1, JVM-2 and Z-138), Burkitt lymphoma (BL; Bjab, Ramos, Daudi) and diffuse large B-cell lymphoma (DLBCL; SU-DHL-4, SU-DHL -6, SU-DHL-9) were treated with 3-Deazaneplanocin A (DZNep); 0.2-5µM) for 24 hours followed by incubation with TRAIL (10-20ng/ml, 6-16hours). Cell death, DNA fragmentation, and mitochondrial membrane potential (Δψm) were determined by calcein staining, subG1 analysis, and TMRM staining, respectively. Neither DZNep alone nor in combination with TRAIL showed a significant induction of necrosis as determined by LDH-release levels, but DZNep alone showed strong anti-proliferative properties at higher concentrations. Activation of the caspase signaling cascade (caspase-8, -3, and PARP cleavage) was analyzed by Western blotting. TRAIL-induced signaling was significantly increased and caspase-8 processing enhanced in DZNep pretreated cells indicating a regulation at the TRAIL/DISC assembly. Although we observed a reduced expression of DR5 in total cell lysates of DZNep treated cells, the surface receptor levels were not altered. Interestingly, down regulation of the well-known caspase inhibitor, cFLIP, correlated with the DZNep-induced increased TRAIL cell killing in all sensitive NHL cells. The DZNep-treatment did not block NF-kB signaling related to cFLIP expression but profoundly affected cFLIP mRNA and protein stability. Elevated levels of cFLIP targeting miRNA’s were observed and were attributed to some extend with cFLIP regulation. Conclusions: In this study, we investigated the impact of a pan-methyltransferase inhibitor (3-deazaneplanocin A, or DZNep) on TRAIL-induced apoptosis in aggressive NHLs: mantle cell, Burkitt, and diffuse large B-cell. We characterized TRAIL apoptosis regulation and caspase activation in several NHL cell lines pre-treated with DZNep. We found that DZNep increased cancer cell sensitivity to TRAIL signaling by promoting caspase-8 processing through accelerated cFLIP degradation. Blockage of methyltransferase activity induced by DZNep profoundly affected cFLIP mRNA and protein stability, at least in part through increased levels of cFLIP-targeting microRNAs (miR-512-3p and miR-346). However, additional microRNAs and cFLIP-regulating mechanisms appear to be involved in DZNep-mediated enhanced response to extrinsic apoptotic stimuli. The capacity of DZNep to target cFLIP expression on multiple levels underscores its potential in TRAIL-based therapies for NHLs. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 14 ◽  
pp. 117955492097636
Author(s):  
Ah-Reum Jeong ◽  
Edward D Ball ◽  
Aaron Michael Goodman

Treatment of cancer has transformed with the introduction of checkpoint inhibitors. However, the majority of solid tumor patients do not respond to checkpoint blockade. In contrast, the response rate to programmed cell death 1 (PD-1) blockade in relapsed/refractory classical Hodgkin lymphoma (cHL) is 65% to 84% which is the highest among all cancers. Currently, checkpoint inhibitors are only approved for cHL and primary mediastinal B-cell lymphoma as the responses to single-agent checkpoint blockade in other hematologic malignancies is disappointingly low. Various established biomarkers such as programmed cell death 1 ligand 1 (PD-L1) protein surface expression, mismatch repair (MMR) status, and tumor mutational burden (TMB) are routinely used in clinical decision-making in solid tumors. In this review, we will explore these biomarkers in the context of hematologic malignancies. We review characteristic 9p24.1 structural alteration in cHL and primary mediastinal B-cell lymphoma (PMBCL) as a basis for response to PD-1 inhibition, as well as the role of antigen presentation pathways. We also explore the reported frequencies of MMR deficiency in various hematologic malignancies and investigate TMB as a predictive marker.


Sign in / Sign up

Export Citation Format

Share Document