scholarly journals Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML

2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Larissa Ewald ◽  
Jessica Dittmann ◽  
Meike Vogler ◽  
Simone Fulda

AbstractDespite advances in the treatment of acute myeloid leukemia (AML), prognosis of AML patients is still dismal and better treatment options are required. B-cell Lymphoma 2 (BCL-2) homology domain 3 (BH3)-mimetics are emerging as a novel class of apoptosis-inducing agents that are currently being tested for the treatment of different hematological malignancies including AML. Particularly, the selective BCL-2 inhibitor ABT-199/Venetoclax is demonstrating clinical responses and has recently been approved in combination for the treatment of AML. Compounds targeting the related protein MCL-1 have recently entered clinical trials, highlighting the urgency to compare the different BH3-mimetics and identify the most promising antiapoptotic target in AML. We performed a side-by-side comparison of different highly selective and potent BH3-mimetics targeting BCL-2 (ABT-199), MCL-1 (S63845) or BCL-xL (A1331852) in a panel of AML cell lines and primary patient cells. Gene knockdown using siRNAs was utilized to investigate the functional relevance of BCL-2 proteins. Western blotting and immunoprecipitations were used to explore the influence of BH3-mimetics on interactions between pro- and antiapoptotic BCL-2 proteins. A1331852 induced apoptosis only in selected cases, indicating that BCL-xL is not a very promising therapeutic target in AML. However, S63845 displayed higher potency than ABT-199, with more cell lines and primary cells responding to S63845 than to ABT-199. MCL-1 dependency in AML cells was confirmed by siRNA-mediated knockdown of MCL-1, which was sufficient to induce apoptosis. S63845-induced cell death was accompanied by a displacement of the BH3-only protein BIM as well as BAK, resulting in BAK-dependent apoptosis. In contrast, ABT-199-induced cell death was mediated by BAX rather than BAK, indicating distinct non-redundant molecular functions of BCL-2 and MCL-1 in AML. Our study reveals that MCL-1 may be a more prevalent therapeutic target than BCL-2 in AML and identifies BIM and BAK as important mediators of S63845-induced apoptosis in AML.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1625-1625 ◽  
Author(s):  
Aine McCarthy ◽  
Vincent Yeung ◽  
John G. Gribben ◽  
Li Jia

Abstract Abstract 1625 Diffuse large B-cell lymphoma (DLBCL) is characterised by overexpression of the anti-apoptotic protein Bcl-2. It has been recently observed that Bcl-2 also inhibits autophagy by binding and sequestering Beclin-1, an essential autophagy protein, but it is unclear whether Bcl-2 inhibits both apoptosis and autophagy in DLBCL cells. We aimed to determine the dual role of Bcl-2 in both apoptosis and autophagy in Bcl-2 positive cell lines (Su-DHL4 and CRL) and Bcl-2 negative cell lines (Su-DHL8 and Su-DHL10) using the BH3 mimetic compound ABT-737. The sensitivity of Bcl-2 positive and Bcl-2 negative cell lines to ABT-737-mediated mitochondrial depolarization (ΔΨmLOW) and cell death (DAPI positive) was assessed by flow cytometry. Treatment of the Bcl-2 positive cell lines Su-DHL4 and CRL with ABT-737 significantly increased (p<0.01) the percentage of both ΔΨmLOW cells, indicating mitochondrial damage as well as DAPI positive cells indicating cell death. Treatment with ABT-737 increased Bax activation and PARP cleavage in Bcl-2 positive cells, indicating that as expected, ABT-737-induced cell death is via apoptosis. ABT-737-induced cell death was not detected in Bcl-2 negative cell lines Su-DHL8 and Su-DHL10, demonstrating that, as expected, the sensitivity of DLBCL cell lines to ABT-737-induced apoptosis is Bcl-2 dependent. Treatment of Bcl-2 positive cells with ABT-737 also resulted in a decreased cellular co-localisation of Bcl-2 and Beclin-1 as detected by immunofluorescent staining. Degradation of p62 and LC3-II, selective substrates of autophagy, was detected by Western blotting in Bcl-2 positive but not in Bcl-2 negative cell lines after treatment with ABT-737 for 15 hours. LC3-I is a diffuse cytoplasmic protein which upon activation of autophagy becomes cleaved and lipidated to LC3-II which becomes punctate within cells. Punctuate LC3-II is a widely used marker of active autophagy. ABT-737-induced autophagosome formation was determined at an earlier time point (3 hours after ABT-737 treatment) using immune-fluorescent microscopy. ABT-737 induced increased numbers of larger punctate LC3-II in Bcl-2 positive Su-DHL4 and CRL cell lines but not in Bcl-2 negative cells, indicating that inhibition of Bcl-2 induces autophagy in Bcl-2 positive cells. We then determined whether autophagy affects ABT-737-induced apoptosis by blocking autophagy using an autophagy inhibitor chloroquine (CQ). Co-treatment with ABT-737 and CQ resulted in an increase in the percentage of ΔΨmLOW cells, DAPI positive cells and PARP cleavage compared to cells treated with ABT-737 alone in Bcl-2 positive cell lines. Combined, these results indicate that inhibition of autophagy by chloroquine further sensitises Bcl-2 positive cells to ABT-737-induced apoptosis. In summary, our results indicate that Bcl-2 inhibits autophagy in lymphoma cells by sequestering Beclin-1. Disruption of this interaction by ABT-737 induces autophagy which in turn inhibits apoptosis. Inhibition of autophagy results in increased sensitivity of Bcl-2 positive cells to ABT-737-induced apoptosis, suggesting a role for autophagy inhibitors in lymphoma treatment. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tsutomu Sato ◽  
Ayumi Tatekoshi ◽  
Kohichi Takada ◽  
Satoshi Iyama ◽  
Yusuke Kamihara ◽  
...  

AbstractDipeptidyl peptidases (DPPs) are proteolytic enzymes that are ideal therapeutic targets in human diseases. Indeed, DPP4 inhibitors are widely used in clinical practice as anti-diabetic agents. In this paper, we show that DPP4 inhibitors also induced cell death in multiple human myeloma cells. Among five DPP4 inhibitors, only two of them, vildagliptin and saxagliptin, exhibited apparent cytotoxic effects on myeloma cell lines, without any difference in suppression of DPP4 activity. As these two DPP4 inhibitors are known to have off-target effects against DPP8/9, we employed the specific DPP8/9 inhibitor 1G244. 1G244 demonstrated anti-myeloma effects on several cell lines and CD138+ cells from patients as well as in murine xenograft model. Through siRNA silencing approach, we further confirmed that DPP8 but not DPP9 is a key molecule in inducing cell death induced by DPP8/9 inhibition. In fact, the expression of DPP8 in CD38+ cells from myeloma patients was higher than that of healthy volunteers. DPP8/9 inhibition induced apoptosis, as evidenced by activated form of PARP, caspases-3 and was suppressed by the pan-caspase inhibitor Z-VAD-FMK. Taken together, these results indicate that DPP8 is a novel therapeutic target for myeloma treatment.


2007 ◽  
Vol 179 (4) ◽  
pp. 701-715 ◽  
Author(s):  
Bernhard Gillissen ◽  
Frank Essmann ◽  
Philipp G. Hemmati ◽  
Antje Richter ◽  
Anja Richter ◽  
...  

B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)–only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1–Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.


2013 ◽  
Vol 450 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Matthew J. Sale ◽  
Simon J. Cook

Tumour cells typically exhibit a G1 cell cycle arrest in response to the MEK1/2 [mitogen-activated protein kinase/ERK (extracellular-signal-regulated kinase) kinase 1/2] inhibitor selumetinib, but do not die, and thus they acquire resistance. In the present study we examined the effect of combining selumetinib with the BH3 [BCL2 (B-cell lymphoma 2) homology domain 3]-mimetic BCL2 inhibitor ABT-263. Although either drug alone caused little tumour cell death, the two agents combined to cause substantial caspase-dependent cell death and inhibit long-term clonogenic survival of colorectal cancer and melanoma cell lines with BRAFV600E or RAS mutations. This cell death absolutely required BAX (BCL2-associated X protein) and was inhibited by RNAi (RNA interference)-mediated knockdown of BIM (BCL2-interacting mediator of cell death) in the BRAFV600E-positive COLO205 cell line. When colorectal cancer cell lines were treated with selumetinib plus ABT-263 we observed a striking reduction in the incidence of cells emerging with acquired resistance to selumetinib. Similar results were observed when we combined ABT-263 with the BRAFV600E-selective inhibitor PLX4720, but only in cells expressing BRAFV600E. Finally, cancer cells in which acquired resistance to selumetinib arises through BRAFV600E amplification remained sensitive to ABT-263, whereas selumetinib-resistant HCT116 cells (KRASG13D amplification) were cross-resistant to ABT-263. Thus the combination of a BCL2 inhibitor and an ERK1/2 pathway inhibitor is synthetic lethal in ERK1/2-addicted tumour cells, delays the onset of acquired resistance and in some cases overcomes acquired resistance to selumetinib.


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2317
Author(s):  
Durbadal Ojha ◽  
Tyson A. Woods ◽  
Karin E. Peterson

A number of viruses, including Herpes Simplex Virus (HSV), West Nile Virus (WNV), La Crosse Virus (LACV), Zika virus (ZIKV) and Tick-borne encephalitis virus (TBEV), have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease or death. Although encephalitis cases caused by these viruses are generally rare, there are relatively few treatment options available for patients with viral encephalitis other than palliative care. Many of these viruses directly infect neurons and can cause neuronal death. Thus, there is the need for the identification of useful therapeutic compounds that can inhibit virus replication in neurons or inhibit virus-induced neuronal cell death. In this paper, we describe the methodology to test compounds for their ability to inhibit virus-induced neuronal cell death. These protocols include the isolation and culturing of primary neurons; the culturing of neuroblastoma and neuronal stem cell lines; infection of these cells with viruses; treatment of these cells with selected drugs; measuring virus-induced cell death using MTT or XTT reagents; analysis of virus production from these cells; as well as the basic understanding in mode of action. We further show direct evidence of the effectiveness of these protocols by utilizing them to test the effectiveness of the polyphenol drug, Rottlerin, at inhibiting Zika virus infection and death of neuronal cell lines.


2004 ◽  
Vol 24 (16) ◽  
pp. 7003-7014 ◽  
Author(s):  
John C. Wilkinson ◽  
Enrique Cepero ◽  
Lawrence H. Boise ◽  
Colin S. Duckett

ABSTRACT X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-xL. Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-xL-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 1003-1010 ◽  
Author(s):  
Chadd E. Nesbit ◽  
Saijun Fan ◽  
Hong Zhang ◽  
Edward V. Prochownik

Abstract The c-myc oncoprotein accelerates programmed cell death (apoptosis) after growth factor deprivation or pharmacological insult in many cell lines. We have shown that max, the obligate c-myc heterodimeric partner protein, also promotes apoptosis after serum withdrawal in NIH3T3 fibroblasts or cytokine deprivation in interleukin-3 (IL-3)-dependent 32D murine myeloid cells. We now show that c-myc– and max-overexpressing 32D cells differ in the nature of their apoptotic responses after IL-3 removal or treatment with chemotherapeutic compounds. In the presence of IL-3, c-myc overexpression enhances the sensitivity of 32D cells to Etoposide (Sigma, St Louis, MO), Adriamycin (Pharmacia, Columbus, OH), and Camptothecin (Sigma), whereas max overexpression increases sensitivity only to Camptothecin. Drug treatment of c-myc–overexpressing cells in the absence of IL-3 did not alter the spectrum of drug sensitivity other than to additively accelerate cell death. In contrast, enhanced sensitivity to Adriamycin, Etoposide, and Taxol (Bristol-Meyers Squibb, Princeton, NJ) was revealed in max-overexpressing cells concurrently deprived of IL-3. Differential rates of apoptosis were not strictly correlated with the ability of the drugs to promote G1 or G2/M arrest. Ectopic expression of Bcl-2 or Bcl-XL blocked drug-induced apoptosis in both cell lines. In contrast, whereas Bcl-2 blocked apoptosis in both cell lines in response to IL-3 withdrawal, Bcl-XL blocked apoptosis in max-overexpressing cells but not in c-myc–overexpressing cells. These results provide mechanistic underpinnings for the idea that c-myc and max modulate distinct apoptotic pathways. © 1998 by The American Society of Hematology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 242-242 ◽  
Author(s):  
Hovav Nechushtan ◽  
Joseph D. Rosenblatt ◽  
Izidore S. Lossos

Abstract Diffuse Large B-cell Lymphoma (DLBCL) represent a diverse group of lymphoid neoplasms with heterogeneous clinical, histological, immunophenotypic, cytogenetic and molecular genetic features. Approximately 50% of DLBCL patients are not cured by the standard combination chemotherapy regimens. DLBCL can be subclassified into GCB-like DLBCL which are characterized by expression of genes normally expressed in germinal center B cells, and having a significantly better overall survival (OS) than the ABC-like DLBCL, which are characterized by expression of genes induced during in vitro activation of normal B cells. At least two markers of the GCB-phenotype - BCL6 and HGAL - are IL-4 target genes, increased expression of which independently predicts better OS. These observations suggest that endogenous or exogenously administered IL-4 may influence behavior of DLBCL. IL-4 mRNA was detected at low levels in 5 of 7 GCB-like and in all 4 ABC-like DLBCL tumor specimens. Two of 7 GCB-like tumors showed high expression levels of IL-4 as determined by real-time RT-PCR. Examination of the effects of IL-4 on proliferation of GCB-like (SUDHL6, SUDHL4 and OCILY19) and ABC-like (OCILY10 and OCILY3) DLBCL cell lines showed that IL-4 mildly increased DNA synthesis, as assessed by thymidine incorporation, in all the GCB-like DLBCL. Conversely, IL-4 markedly decreased proliferation in the ABC-like DLBCL cell lines by inducing G1 arrest. IL-4 also differently affected the sensitivity of GCB-like and ABC-like DLBCL to doxorubicin. IL-4 reduced doxorubicin-induced cell death of ABC-like cell lines (20–50% reduction) while it markedly increased the killing of the GCB-like cells (40–80% induction). IL-4 also prevented serum starvation-induced cell death of the ABC-like DLBCL, but it increased cell death of the GCB-like DLBCL cell lines. Recently, Rituximab was shown to improve survival of DLBCL patients when added to the CHOP regimen. The precise mechanisms of its action are unknown; however present data suggest that it may affect lymphoma cells either by activation of complement lysis or by mediating ADCC. IL-4 reduced the complement mediated Rituximab cell lysis of the ABC-like cell lines, while it increased the complement mediated Rituximab cell lysis of the GCB-like DLBCL cell lines. Expression levels of surface markers that modulate complement cell lysis (CD46, CD55 and CD59) were not affected by IL-4 exposure. In contrast, IL-4 did not affect killing of GCB-like and ABC-like cells by ADCC. These observations suggest that DLBCL subtypes may respond differently to the in vivo cytokine milieu of the tumor. Different responsiveness to IL-4 may modulate tumor sensitivity to the current therapeutic modalities and can potentially be explored to augment response to chemotherapy and Rituximab.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4630-4630
Author(s):  
Marion Travert ◽  
Patricia Ame-Thomas ◽  
Thierry Fest ◽  
Céline Pangault ◽  
Gilbert Semana ◽  
...  

Abstract Follicular lymphoma are characterized by the rearrangement of the bcl-2 gene, present in more than 90% of patients. Over-expression of the bcl-2 protein resulting from this translocation is associated with the inability to eradicate the lymphoma, by inhibiting apoptosis. Despite the median survival ranges from 8 to 15 years, leading to the designation of indolent lymphoma, patients with advanced-stage follicular lymphoma are not cured with current therapeutic options. Numerous reports have shown that Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in a wide variety of transformed cell lines of diverse lineage, but does not appear to kill normal cells, even though TRAIL mRNA is expressed at significant levels in most normal tissues. As cell death induced by TRAIL occurs almost exclusively in tumor cells, it suggests that this drug is safe to use as an antitumor therapy. We therefore investigated the efficiency of this cytokine to induce apoptosis in germinal center derived B cell lymphoma, despite bcl-2 over-expression. Our study was also designed to evaluate the role of CD40L, one of the main differentiation signal involved in B cell maturation during the germinal center reaction, on the regulation of TRAIL-induced apoptosis. This study was performed on three germinal center derived tumor cell lines (BL2, VAL and RL), and on normal and tumor primary cells obtained from human tonsils and lymph nodes. Our data show that normal B lymphocytes obtained from tonsil biopsies are resistant to TRAIL-mediated apoptosis, when B lymphoma cells issued from lymph node of numerous patients are significantly sensitive to the cytokine. When we treat these lymphoma cells with trimeric huCD40L, we partly rescue these cells from spontaneous apoptosis which naturally occurs after few days of culture, and reverse by 50% TRAIL-mediated apoptosis when cells were co-treated with huCD40L for 16 hours. Similar results were reproduced on some germinal center derived cell lines. BL2 was indeed found highly sensitive to TRAIL-induced apoptosis following a 24 hour exposure. On the opposite, VAL and RL were almost insensitive. We have demonstrate that apoptosis is exclusively mediated by TRAIL-R1 in BL2. Analysis of signalling pathways revealed that the protection to TRAIL-induced apoptosis by CD40L is due to some specific anti-apoptotic molecules that will be described. Genes encoding these molecules are targets of the NFκB signalling pathway activated by CD40L. Our results suggest that activation of NFκB and induction of anti-apoptotic molecules by CD40L play an important role in the protection of germinal center derived B cell lymphomas against apoptosis. Then, NFκB inhibitors may be wise to use in clinical trials in conjunction with TRAIL against follicular lymphomas.


Sign in / Sign up

Export Citation Format

Share Document