scholarly journals New Tetrahymena basal body protein components identify basal body domain structure

2007 ◽  
Vol 178 (6) ◽  
pp. 905-912 ◽  
Author(s):  
Chandra L. Kilburn ◽  
Chad G. Pearson ◽  
Edwin P. Romijn ◽  
Janet B. Meehl ◽  
Thomas H. Giddings ◽  
...  

Basal bodies organize the nine doublet microtubules found in cilia. Cilia are required for a variety of cellular functions, including motility and sensing stimuli. Understanding this biochemically complex organelle requires an inventory of the molecular components and the contribution each makes to the overall structure. We define a basal body proteome and determine the specific localization of basal body components in the ciliated protozoan Tetrahymena thermophila. Using a biochemical, bioinformatic, and genetic approach, we identify 97 known and candidate basal body proteins. 24 novel T. thermophila basal body proteins were identified, 19 of which were localized to the ultrastructural level, as seen by immunoelectron microscopy. Importantly, we find proteins from several structural domains within the basal body, allowing us to reveal how each component contributes to the overall organization. Thus, we present a high resolution localization map of basal body structure highlighting important new components for future functional studies.

2007 ◽  
Vol 179 (1) ◽  
pp. 167-167 ◽  
Author(s):  
Chandra L. Kilburn ◽  
Chad G. Pearson ◽  
Edwin P. Romijn ◽  
Janet B. Meehl ◽  
Thomas H. Giddings ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Hung Quang Dang ◽  
Qing Zhou ◽  
Veronica W. Rowlett ◽  
Huiqing Hu ◽  
Kyu Joon Lee ◽  
...  

ABSTRACT The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei . Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote. IMPORTANCE The basal body in the early-branching protozoan Trypanosoma brucei nucleates flagellum assembly and also regulates organelle segregation, cell morphogenesis, and cell division. However, the molecular composition and the assembly process of the basal body remain poorly understood. Here, we identify 14 conserved basal body proteins and 25 trypanosome-specific basal body proteins via bioinformatics, localization-based screening, and proximity-dependent biotin identification. We further localized these proteins to distinct subdomains of the basal body by using fluorescence microscopy and superresolution microscopy, discovered novel regulators of basal body duplication and separation, and uncovered new functions of conserved basal body proteins in basal body duplication and separation. This work lays the foundation for dissecting the mechanisms underlying basal body biogenesis and inheritance in T. brucei .


2019 ◽  
Author(s):  
Takanori Matsubara ◽  
Takayuki Yanagida ◽  
Noriaki Kawaguchi ◽  
Takashi Nakano ◽  
Junichiro Yoshimoto ◽  
...  

Scintillators emit visible luminescence when irradiated with X-rays. Given the unlimited tissue penetration of X-rays, the employment of scintillators could enable remote optogenetic control of neural functions at any depth of the brain. Here we show that a yellow-emitting inorganic scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG), could effectively activate red-shifted excitatory and inhibitory opsins, ChRmine and GtACR1, respectively. Using injectable Ce:GAGG microparticles, we successfully activated and inhibited midbrain dopamine neurons in freely moving mice by X-ray irradiation, producing bidirectional modulation of place preference behavior. Ce:GAGG microparticles were non-cytotoxic and biocompatible, allowing for chronic implantation. Pulsed X-ray irradiation at a clinical dose level was sufficient to elicit behavioral changes without reducing the number of radiosensitive cells in the brain and bone marrow. Thus, scintillator-mediated optogenetics enables less invasive, wireless control of cellular functions at any tissue depth in living animals, expanding X-ray applications to functional studies of biology and medicine.


1992 ◽  
Vol 103 (3) ◽  
pp. 629-641 ◽  
Author(s):  
J.G. Hoey ◽  
R.H. Gavin

In the ciliate cytoskeleton, basal bodies are contained within separate, filamentous cages which are closely associated with basal body microtubules. We have used two polyclonal anti-actin antibodies to localize actin within the basal body-cage complex of Tetrahymena. An antiserum against a Tetrahymena oral apparatus fraction enriched for basal body proteins was produced in rabbits. Agarose-linked chicken muscle actin was used to affinity-purify anti-Tetrahymena actin antibodies from the anti-oral apparatus antiserum. Agarose-linked chicken muscle actin was used to affinity-purify anti-chicken muscle actin antibodies from a commercially available antiserum against chicken muscle actin. Both affinity-purified antibodies were monospecific for Tetrahymena actin on immunoblots containing total oral apparatus protein. The anti-actin antibodies were localized to both somatic and oral basal bodies in Tetrahymena by immunofluorescence microscopy. At the ultrastructural level with the immunogold technique, these antibodies labeled actin epitopes in four distinct regions of the basal body-cage complex: (a) basal body walls, (b) basal plate filaments, (c) proximal-end filaments and (d) cage wall filaments. In addition, the antibody labeled filament bundles that interconnect groups of basal bodies (membranelles) within the oral apparatus. Identical labeling patterns were observed with basal bodies in the isolated oral apparatus, basal bodies in the in situ oral apparatus and somatic basal bodies in situ. Quantitative analysis of gold particle distribution was used to demonstrate the specificity of the antibodies for the basal body-cage complex and to show that non-specific binding of the antibodies was negligible. Preadsorption of the antibody with muscle actin effectively eliminated the capacity of the antibody to bind to proteins on immunoblots and to basal body structures with the immunogold labeling technique. These results provide evidence for actin in the basal body-cage complex and raise the possibility of a contractile system associated with basal bodies.


2000 ◽  
Vol 113 (11) ◽  
pp. 1973-1984 ◽  
Author(s):  
A.M. Fry ◽  
P. Descombes ◽  
C. Twomey ◽  
R. Bacchieri ◽  
E.A. Nigg

Nek2 is a mammalian cell cycle-regulated serine/threonine kinase that belongs to the family of proteins related to NIMA of Aspergillus nidulans. Functional studies in diverse species have implicated NIMA-related kinases in G(2)/M progression, chromatin condensation and centrosome regulation. To directly address the requirements for vertebrate Nek2 kinases in these cell cycle processes, we have turned to the biochemically-tractable system provided by Xenopus laevis egg extracts. Following isolation of a Xenopus homologue of Nek2, called X-Nek2B, we found that X-Nek2B abundance and activity remained constant through the first mitotic cycle implying a fundamental difference in Nek2 regulation between embryonic and somatic cell cycles. Removal of X-Nek2B from extracts did not disturb either entry into mitosis or the accompanying condensation of chromosomes providing no support for a requirement for Nek2 in these processes at least in embryonic cells. In contrast, X-Nek2B localized to centrosomes of adult Xenopus cells and was rapidly recruited to the basal body of Xenopus sperm following incubation in egg extracts. Recruitment led to phosphorylation of the X-Nek2B kinase. Most importantly, depletion of X-Nek2B from extracts significantly delayed both the assembly of microtubule asters and the recruitment of gamma-tubulin to the basal body. Hence, these studies demonstrate that X-Nek2B is required for efficient assembly of a functional zygotic centrosome and highlight the possibility of multiple roles for vertebrate Nek2 kinases in the centrosome cycle.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Xiaoduo Dong ◽  
Teck Kwang Lim ◽  
Qingsong Lin ◽  
Cynthia Y. He

ABSTRACT Sperm flagellar protein 1 (Spef1, also known as CLAMP) is a microtubule-associated protein involved in various microtubule-related functions from ciliary motility to polarized cell movement and planar cell polarity. In Trypanosoma brucei, the causative agent of trypanosomiasis, a single Spef1 ortholog (TbSpef1) is associated with a microtubule quartet (MtQ), which is in close association with several single-copied organelles and is required for their coordinated biogenesis during the cell cycle. Here, we investigated the interaction network of TbSpef1 using BioID, a proximity-dependent protein-protein interaction screening method. Characterization of selected candidates provided a molecular description of TbSpef1-MtQ interactions with nearby cytoskeletal structures. Of particular interest, we identified a new basal body protein TbSAF1, which is required for TbSpef1-MtQ anchorage to the basal bodies. The results demonstrate that MtQ-basal body anchorage is critical for the spatial organization of cytoskeletal organelles, as well as the morphology of the membrane-bound flagellar pocket where endocytosis takes place in this parasite. IMPORTANCE Trypanosoma brucei contains a large array of single-copied organelles and structures. Through extensive interorganelle connections, these structures replicate and divide following a strict temporal and spatial order. A microtubule quartet (MtQ) originates from the basal bodies and extends toward the anterior end of the cell, stringing several cytoskeletal structures together along its path. In this study, we examined the interaction network of TbSpef1, the only protein specifically located to the MtQ. We identified an interaction between TbSpef1 and a basal body protein TbSAF1, which is required for MtQ anchorage to the basal bodies. This study thus provides the first molecular description of MtQ association with the basal bodies, since the discovery of this association ∼30 years ago. The results also reveal a general mechanism of the evolutionarily conserved Spef1/CLAMP, which achieves specific cellular functions via their conserved microtubule functions and their diverse molecular interaction networks.


2016 ◽  
Vol 215 (4) ◽  
pp. 457-466 ◽  
Author(s):  
Brian A. Bayless ◽  
Domenico F. Galati ◽  
Anthony D. Junker ◽  
Chelsea B. Backer ◽  
Jacek Gaertig ◽  
...  

Basal bodies are radially symmetric, microtubule-rich structures that nucleate and anchor motile cilia. Ciliary beating produces asymmetric mechanical forces that are resisted by basal bodies. To resist these forces, distinct regions within the basal body ultrastructure and the microtubules themselves must be stable. However, the molecular components that stabilize basal bodies remain poorly defined. Here, we determine that Fop1 functionally interacts with the established basal body stability components Bld10 and Poc1. We find that Fop1 and microtubule glutamylation incorporate into basal bodies at distinct stages of assembly, culminating in their asymmetric enrichment at specific triplet microtubule regions that are predicted to experience the greatest mechanical force from ciliary beating. Both Fop1 and microtubule glutamylation are required to stabilize basal bodies against ciliary beating forces. Our studies reveal that microtubule glutamylation and Bld10, Poc1, and Fop1 stabilize basal bodies against the forces produced by ciliary beating via distinct yet interdependent mechanisms.


Author(s):  
Nina McTiernan ◽  
◽  
Harinder Gill ◽  
Carlos E. Prada ◽  
Harry Pachajoa ◽  
...  

Abstract Nearly half of all human proteins are acetylated at their N-termini by the NatA N-terminal acetyltransferase complex. NAA10 is evolutionarily conserved as the catalytic subunit of NatA in complex with NAA15, but may also have NatA-independent functions. Several NAA10 variants are associated with genetic disorders. The phenotypic spectrum includes developmental delay, intellectual disability, and cardiac abnormalities. Here, we have identified the previously undescribed NAA10 c.303C>A and c.303C>G p.(N101K) variants in two unrelated girls. These girls have developmental delay, but they both also display hemihypertrophy a feature normally not observed or registered among these cases. Functional studies revealed that NAA10 p.(N101K) is completely impaired in its ability to bind NAA15 and to form an enzymatically active NatA complex. In contrast, the integrity of NAA10 p.(N101K) as a monomeric acetyltransferase is intact. Thus, this NAA10 variant may represent the best example of the impact of NatA mediated N-terminal acetylation, isolated from other potential NAA10-mediated cellular functions and may provide important insights into the phenotypes observed in individuals expressing pathogenic NAA10 variants.


2020 ◽  
Vol 21 (16) ◽  
pp. 5664
Author(s):  
Julian Santiago-Moreno ◽  
Elisabeth Blesbois

This review provides an updated overview of the seminal plasma composition, and the role of metabolic and protein components on the sperm function of avian species. In addition, the implication of seminal plasma on assisted reproductive techniques of birds was discussed. The semen of birds usually has exceptionally high sperm concentration with relatively little seminal plasma, but this contributes to very fast changes in sperm metabolism and function. The biochemical characteristics and physiological roles of the various seminal plasma components in birds (carbohydrates, lipids, amino acids, hormones, and proteins) are poorly understood. Seminal plasma content of proteins has an action on most cellular functions: metabolism, immunity, oxido-reduction regulation, proteolysis, apoptosis, ion homeostasis, and antimicrobial defenses. The variable amount of many proteins is related to a different fertility capacity of poultry sperm. The role of seminal plasma on semen conservation (chilling and freezing) remains largely a matter of speculation, as both inhibitory and stimulating effects have been found. Whereas the presence of seminal plasma did not seem to affect the sperm survival after freezing–thawing, DNA fragmentation is lower in the absence of seminal plasma. The molecular basis of the influence of seminal plasma on sperm cryo-resistance was also discussed in the present review.


Sign in / Sign up

Export Citation Format

Share Document