scholarly journals Transmembrane domain–dependent partitioning of membrane proteins within the endoplasmic reticulum

2008 ◽  
Vol 181 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Paolo Ronchi ◽  
Sara Colombo ◽  
Maura Francolini ◽  
Nica Borgese

The length and hydrophobicity of the transmembrane domain (TMD) play an important role in the sorting of membrane proteins within the secretory pathway; however, the relative contributions of protein–protein and protein–lipid interactions to this phenomenon are currently not understood. To investigate the mechanism of TMD-dependent sorting, we used the following two C tail–anchored fluorescent proteins (FPs), which differ only in TMD length: FP-17, which is anchored to the endoplasmic reticulum (ER) membrane by 17 uncharged residues, and FP-22, which is driven to the plasma membrane by its 22-residue-long TMD. Before export of FP-22, the two constructs, although freely diffusible, were seen to distribute differently between ER tubules and sheets. Analyses in temperature-blocked cells revealed that FP-17 is excluded from ER exit sites, whereas FP-22 is recruited to them, although it remains freely exchangeable with the surrounding reticulum. Thus, physicochemical features of the TMD influence sorting of membrane proteins both within the ER and at the ER–Golgi boundary by simple receptor-independent mechanisms based on partitioning.

2005 ◽  
Vol 169 (6) ◽  
pp. 897-908 ◽  
Author(s):  
Cosima Luedeke ◽  
Stéphanie Buvelot Frei ◽  
Ivo Sbalzarini ◽  
Heinz Schwarz ◽  
Anne Spang ◽  
...  

Polarized cells frequently use diffusion barriers to separate plasma membrane domains. It is unknown whether diffusion barriers also compartmentalize intracellular organelles. We used photobleaching techniques to characterize protein diffusion in the yeast endoplasmic reticulum (ER). Although a soluble protein diffused rapidly throughout the ER lumen, diffusion of ER membrane proteins was restricted at the bud neck. Ultrastructural studies and fluorescence microscopy revealed the presence of a ring of smooth ER at the bud neck. This ER domain and the restriction of diffusion for ER membrane proteins through the bud neck depended on septin function. The membrane-associated protein Bud6 localized to the bud neck in a septin-dependent manner and was required to restrict the diffusion of ER membrane proteins. Our results indicate that Bud6 acts downstream of septins to assemble a fence in the ER membrane at the bud neck. Thus, in polarized yeast cells, diffusion barriers compartmentalize the ER and the plasma membrane along parallel lines.


Author(s):  
Sofia Dimou ◽  
George Diallinas

Eukaryotic plasma membrane (PM) transporters face critical challenges that are not widely present in prokaryotes. The two most important issues are proper subcellular traffic and targeting to the PM, and regulated endocytosis in response to physiological, developmental or stress signals. Sorting of transporters from their site of synthesis, the Endoplasmic Reticulum (ER), to the PM has been long thought, but not formally shown, to occur via the conventional Golgi-dependent vesicular secretory pathway. Endocytosis of specific eukaryotic transporters has been studied more systematically and shown to involve ubiquitination, internalization, and sorting to early endosomes, followed by turnover in the MVB/lysosomes/vacuole system. In specific cases internalized transporters have been shown to recycle back to the PM. However, the mechanisms of transporter forward trafficking and turnover have been overturned recently through systematic work in the model fungus Aspergillus nidulans. In this review we present evidence that shows that transporter traffic to the PM takes place through Golgi-bypass and transporter endocytosis operates via a mechanism that is distinct from that of recycling membrane cargoes essential for fungal growth. We discuss these findings in relation to adaptation to challenges imposed by cell polarity in fungi as well as in other eukaryotes and provide a rationale why transporters and possibly other housekeeping membrane proteins ‘avoid’ routes of polar trafficking.


2017 ◽  
Author(s):  
Verena Kriechbaumer ◽  
Lilly Maneta-Peyret ◽  
Stanley W Botchway ◽  
Jessica Upson ◽  
Louise Hughes ◽  
...  

AbstractThe family of reticulon proteins has been shown to be involved in a variety of functions in eukaryotic cells including tubulation of the endoplasmic reticulum (ER), formation of cell plates and primary plasmodesmata. Reticulons are integral ER membrane proteins characterised by a reticulon homology domain comprising four transmembrane domains which results in the reticulons sitting in the membrane in a W-topology. Here we report on a subgroup of reticulons with an extended N-terminal domain and in particular on arabidopsis reticulon 20. We show that reticulon 20 is located in a unique punctate pattern on the ER membrane. Its closest homologue reticulon 19 labels the whole ER. We show that mutants in RTN20 or RTN19, respectively, display a significant change in sterol composition in the roots indicating a role in lipid biosynthesis or regulation. A third homologue in this family - 3BETAHSD/D1- is localised to ER exit sites resulting in an intriguing location difference for the three proteins.


2000 ◽  
Vol 151 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Richard G. Gardner ◽  
Gwendolyn M. Swarbrick ◽  
Nathan W. Bays ◽  
Stephen R. Cronin ◽  
Sharon Wilhovsky ◽  
...  

Endoplasmic reticulum (ER)-associated degradation (ERAD) is required for ubiquitin-mediated destruction of numerous proteins. ERAD occurs by processes on both sides of the ER membrane, including lumenal substrate scanning and cytosolic destruction by the proteasome. The ER resident membrane proteins Hrd1p and Hrd3p play central roles in ERAD. We show that these two proteins directly interact through the Hrd1p transmembrane domain, allowing Hrd1p stability by Hrd3p-dependent control of the Hrd1p RING-H2 domain activity. Rigorous reevaluation of Hrd1p topology demonstrated that the Hrd1p RING-H2 domain is located and functions in the cytosol. An engineered, completely lumenal, truncated version of Hrd3p functioned normally in both ERAD and Hrd1p stabilization, indicating that the lumenal domain of Hrd3p regulates the cytosolic Hrd1p RING-H2 domain by signaling through the Hrd1p transmembrane domain. Additionally, we identified a lumenal region of Hrd3p dispensable for regulation of Hrd1p stability, but absolutely required for normal ERAD. Our studies show that Hrd1p and Hrd3p form a stoichiometric complex with ERAD determinants in both the lumen and the cytosol. The HRD complex engages in lumen to cytosol communication required for regulation of Hrd1p stability and the coordination of ERAD events on both sides of the ER membrane.


2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


2011 ◽  
Vol 286 (12) ◽  
pp. 10058-10065 ◽  
Author(s):  
Chunjuan Huang ◽  
Amy Chang

The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.


1990 ◽  
Vol 1 (5) ◽  
pp. 415-424 ◽  
Author(s):  
T Kreiner ◽  
H P Moore

Membrane traffic has been shown to be regulated during cell division. In particular, with the use of viral membrane proteins as markers, endoplasmic reticulum (ER)-to-Golgi transport in mitotic cells has been shown to be essentially blocked. However, the effect of mitosis on other steps in the secretory pathway is less clear, because an early block makes examination of following steps difficult. Here, we report studies on the functional characteristics of secretory pathways in mitotic mammalian tissue culture cells by the use of a variety of markers. Chinese hamster ovary cells were transfected with cDNAs encoding secretory proteins. Consistent with earlier results following viral membrane proteins, we found that the overall secretory pathway is nonfunctional in mitotic cells, and a major block to secretion is at the step between ER and Golgi: the overall rate of secretion of human growth hormone is reduced at least 10-fold in mitotic cells, and export of truncated vesicular stomatitis virus G protein from the ER is inhibited to about the same extent, as judged by acquisition of endoglycosidase H resistance. To ascertain the integrity of transport from the trans-Golgi to plasma membrane, we followed the secretion of sulfated glycosaminoglycan (GAG) chains, which are synthesized in the Golgi and thus are not subject to the earlier ER-to-Golgi block. GAG chains are valid markers for the pathway taken by constitutive secretory proteins; both protein secretion and GAG chain secretion are sensitive to treatment with n-ethyl-maleimide and monensin and are blocked at 19 degrees C. We found that the extent of GAG-chain secretion is not altered during mitosis, although the initial rate of secretion is reduced about twofold in mitotic compared with interphase cells. Thus, during mitosis, transport from the trans-Golgi to plasma membrane is much less hindered than ER-to-Golgi traffic. We conclude that transport steps are not affected to the same extent during mitosis.


2001 ◽  
Vol 114 (11) ◽  
pp. 2199-2204 ◽  
Author(s):  
Tineke Voorn-Brouwer ◽  
Astrid Kragt ◽  
Henk F. Tabak ◽  
Ben Distel

The classic model for peroxisome biogenesis states that new peroxisomes arise by the fission of pre-existing ones and that peroxisomal matrix and membrane proteins are recruited directly from the cytosol. Recent studies challenge this model and suggest that some peroxisomal membrane proteins might traffic via the endoplasmic reticulum to peroxisomes. We have studied the trafficking in human fibroblasts of three peroxisomal membrane proteins, Pex2p, Pex3p and Pex16p, all of which have been suggested to transit the endoplasmic reticulum before arriving in peroxisomes. Here, we show that targeting of these peroxisomal membrane proteins is not affected by inhibitors of COPI and COPII that block vesicle transport in the early secretory pathway. Moreover, we have obtained no evidence for the presence of these peroxisomal membrane proteins in compartments other than peroxisomes and demonstrate that COPI and COPII inhibitors do not affect peroxisome morphology or integrity. Together, these data fail to provide any evidence for a role of the endoplasmic reticulum in peroxisome biogenesis.


2020 ◽  
Vol 6 (14) ◽  
pp. eaay4472 ◽  
Author(s):  
Anna Oliveras ◽  
Clara Serrano-Novillo ◽  
Cristina Moreno ◽  
Alicia de la Cruz ◽  
Carmen Valenzuela ◽  
...  

The potassium channel Kv7.1 associates with the KCNE1 regulatory subunit to trigger cardiac IKs currents. Although the Kv7.1/KCNE1 complex has received much attention, the subcellular compartment hosting the assembly is the subject of ongoing debate. Evidence suggests that the complex forms either earlier in the endoplasmic reticulum or directly at the plasma membrane. Kv7.1 and KCNE1 mutations, responsible for long QT syndromes, impair association and traffic, thereby altering IKs currents. We found that Kv7.1 and KCNE1 do not assemble in the first stages of their biogenesis. Data support an unconventional secretory pathway for Kv7.1-KCNE1 that bypasses Golgi. This route targets channels to endoplasmic reticulum–plasma membrane junctions, where Kv7.1-KCNE1 assemble. This mechanism helps to resolve the ongoing controversy about the subcellular compartment hosting the association. Our results also provide new insights into IKs channel localization at endoplasmic reticulum–plasma membrane junctions, highlighting an alternative anterograde trafficking mechanism for oligomeric ion channels.


1999 ◽  
Vol 10 (4) ◽  
pp. 1043-1059 ◽  
Author(s):  
Wolfgang P. Barz ◽  
Peter Walter

Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes inSaccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for “delayed GPI-anchored protein transport”), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Δ dgt1Δ cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting thatLAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non–GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Δ dgt1Δ cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Δ dgt1Δcells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.


Sign in / Sign up

Export Citation Format

Share Document