scholarly journals Motor domain phosphorylation and regulation of the Drosophila kinesin 13, KLP10A

2009 ◽  
Vol 186 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Vito Mennella ◽  
Dong-Yan Tan ◽  
Daniel W. Buster ◽  
Ana B. Asenjo ◽  
Uttama Rath ◽  
...  

Microtubule (MT)-destabilizing kinesin 13s perform fundamental roles throughout the cell cycle. In this study, we show that the Drosophila melanogaster kinesin 13, KLP10A, is phosphorylated in vivo at a conserved serine (S573) positioned within the α-helix 5 of the motor domain. In vitro, a phosphomimic KLP10A S573E mutant displays a reduced capacity to depolymerize MTs but normal affinity for the MT lattice. In cells, replacement of endogenous KLP10A with KLP10A S573E dampens MT plus end dynamics throughout the cell cycle, whereas a nonphosphorylatable S573A mutant apparently enhances activity during mitosis. Electron microscopy suggests that KLP10A S573 phosphorylation alters its association with the MT lattice, whereas molecular dynamics simulations reveal how KLP10A phosphorylation can alter the kinesin–MT interface without changing important structural features within the motor’s core. Finally, we identify casein kinase 1α as a possible candidate for KLP10A phosphorylation. We propose a model in which phosphorylation of the KLP10A motor domain provides a regulatory switch controlling the time and place of MT depolymerization.

2021 ◽  
Author(s):  
Prakash K. Shukla ◽  
Dhiraj Sinha ◽  
Andrew M. Leng ◽  
Jesse E. Bissell ◽  
Shravya Thatipamula ◽  
...  

AbstractRad6, an E2 ubiquitin-conjugating enzyme conserved from yeast to humans, functions in transcription, genome maintenance and proteostasis. The contributions of many conserved secondary structures of Rad6 and its human homologs UBE2A and UBE2B to their biological functions are not understood. A mutant RAD6 allele with a missense substitution at alanine-126 (A126) of α-helix-3 that causes defects in telomeric gene silencing, DNA repair and protein degradation was reported over two decades ago. Here, using a combination of genetics, biochemical, biophysical, and computational approaches, we discovered that α-helix-3 A126 mutations compromise the ability of Rad6 to ubiquitinate target proteins without disrupting interactions with partner E3 ubiquitin-ligases that are required for their various biological functions in vivo. Explaining the defective in vitro or in vivo ubiquitination activities, molecular dynamics simulations and NMR showed that α-helix-3 A126 mutations cause local disorder of the catalytic pocket of Rad6, and also disorganize the global structure of the protein to decrease its stability in vivo. We further demonstrate that α-helix-3 A126 mutations deform the structures of UBE2A and UBE2B, the human Rad6 homologs, and compromise the in vitro ubiquitination activity and folding of UBE2B. Molecular dynamics simulations and circular dichroism spectroscopy along with functional studies further revealed that cancer-associated mutations in α-helix-3 of UBE2A or UBE2B alter both structure and activity, providing an explanation for their pathogenicity. Overall, our studies reveal that the conserved α-helix-3 is a crucial structural constituent that controls the organization of catalytic pockets and biological functions of the Rad6-family E2 ubiquitin-conjugating enzymes.HighlightsContributions of the conserved α-helix-3 to the functions of E2 enzymes is not known.Mutations in alanine-126 of α-helix-3 impair in vitro enzymatic activity and in vivo biological functions of Rad6.Mutations in alanine-126 of α-helix-3 disorganize local or global protein structure, compromise folding or stability, and impair the catalytic activities of yeast Rad6 and its human homologs UBE2A and UBE2B.Cancer-associated mutations in α-helix-3 of human UBE2A or UBE2B alter protein flexibility, structure, and activity.α-helix-3 is a key structural component of yeast and human Rad6 E2 ubiquitin-conjugating enzymes.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4657
Author(s):  
Phuong Thuy Viet Nguyen ◽  
Han Ai Huynh ◽  
Dat Van Truong ◽  
Thanh-Dao Tran ◽  
Cam-Van Thi Vo

Inhibition of human pancreatic lipase, a crucial enzyme in dietary fat digestion and absorption, is a potent therapeutic approach for obesity treatment. In this study, human pancreatic lipase inhibitory activity of aurone derivatives was explored by molecular modeling approaches. The target protein was human pancreatic lipase (PDB ID: 1LPB). The 3D structures of 82 published bioactive aurone derivatives were docked successfully into the protein catalytic active site, using AutoDock Vina 1.5.7.rc1. Of them, 62 compounds interacted with the key residues of catalytic trial Ser152-Asp176-His263. The top hit compound (A14), with a docking score of −10.6 kcal⋅mol−1, was subsequently submitted to molecular dynamics simulations, using GROMACS 2018.01. Molecular dynamics simulation results showed that A14 formed a stable complex with 1LPB protein via hydrogen bonds with important residues in regulating enzyme activity (Ser152 and Phe77). Compound A14 showed high potency for further studies, such as the synthesis, in vitro and in vivo tests for pancreatic lipase inhibitory activity.


2021 ◽  
Author(s):  
Kamolrat Somboon ◽  
Oliver Melling ◽  
Maylis Lejeune ◽  
Glaucia M.S. Pinheiro ◽  
Annick Paquelin ◽  
...  

Energized nutrient import in bacteria needs the interaction between a TonB-dependent transporter (TBDT) and a TonB protein. The mechanism of energy and signal transfer between these two proteins is not well understood. They belong to two membranes separated by the periplasmic space and possess each a disordered and flexible region. Therefore, the membranes, their distance and geometrical constraints together with the protein dynamics are important factors for deciphering this trans-envelope system. Here we report the first example of the interaction of a TBDT with a TonB protein in the presence of both membranes. By combining molecular dynamics simulations in a membrane model, in vitro and in vivo phenotypic experiments we obtained the comprehensive network of interaction between HasR, a heme/hemophore receptor and its dedicated TonB protein, HasB.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Arshia Majeed ◽  
Waqar Hussain ◽  
Farkhanda Yasmin ◽  
Ammara Akhtar ◽  
Nouman Rasool

The recent COVID-19 pandemic has impacted nearly the whole world due to its high morbidity and mortality rate. Thus, scientists around the globe are working to find potent drugs and designing an effective vaccine against COVID-19. Phytochemicals from medicinal plants are known to have a long history for the treatment of various pathogens and infections; thus, keeping this in mind, this study was performed to explore the potential of different phytochemicals as candidate inhibitors of the HR1 domain in SARS-CoV-2 spike protein by using computer-aided drug discovery methods. Initially, the pharmacological assessment was performed to study the drug-likeness properties of the phytochemicals for their safe human administration. Suitable compounds were subjected to molecular docking to screen strongly binding phytochemicals with HR1 while the stability of ligand binding was analyzed using molecular dynamics simulations. Quantum computation-based density functional theory (DFT) analysis was constituted to analyze the reactivity of these compounds with the receptor. Through analysis, 108 phytochemicals passed the pharmacological assessment and upon docking of these 108 phytochemicals, 36 were screened passing a threshold of -8.5 kcal/mol. After analyzing stability and reactivity, 5 phytochemicals, i.e., SilybinC, Isopomiferin, Lycopene, SilydianinB, and Silydianin are identified as novel and potent candidates for the inhibition of HR1 domain in SARS-CoV-2 spike protein. Based on these results, it is concluded that these compounds can play an important role in the design and development of a drug against COVID-19, after an exhaustive in vitro and in vivo examination of these compounds, in future.


2015 ◽  
Vol 112 (25) ◽  
pp. E3189-E3198 ◽  
Author(s):  
Edgar E. Boczek ◽  
Lasse G. Reefschläger ◽  
Marco Dehling ◽  
Tobias J. Struller ◽  
Elisabeth Häusler ◽  
...  

Hsp90 is a molecular chaperone involved in the activation of numerous client proteins, including many kinases. The most stringent kinase client is the oncogenic kinase v-Src. To elucidate how Hsp90 chaperones kinases, we reconstituted v-Src kinase chaperoning in vitro and show that its activation is ATP-dependent, with the cochaperone Cdc37 increasing the efficiency. Consistent with in vivo results, we find that Hsp90 does not influence the almost identical c-Src kinase. To explain these findings, we designed Src kinase chimeras that gradually transform c-Src into v-Src and show that their Hsp90 dependence correlates with compactness and folding cooperativity. Molecular dynamics simulations and hydrogen/deuterium exchange of Hsp90-dependent Src kinase variants further reveal increased transitions between inactive and active states and exposure of specific kinase regions. Thus, Hsp90 shifts an ensemble of conformations of v-Src toward high activity states that would otherwise be metastable and poorly populated.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Letizia De Chiara ◽  
Elena Lazzeri ◽  
Maria Lucia Angelotti ◽  
Carolina Conte ◽  
Anna Julie Peired ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI) is a global health concern. If not lethal in the acute phase, AKI is considered reversible based on the capacity of surviving tubular cells (TECs) to re-enter cell cycle. However, even mild AKI episodes carry a substantial risk of developing chronic kidney disease (CKD). The pathophysiological basis for this phenomenon remains unclear. Recently, we demonstrated that tubular epithelial cells (TECs) can undergo endoreplication-mediated hypertrophy after AKI. Endoreplications are incomplete cell cycles that lead to the formation of polyploid cells. As polyploid cells can provide increased cell function without restoring tissue integrity, we hypothesized that this mechanism is essential to survive AKI but it can be potentially maladaptive. Method To address this hypothesis, we employed a series of in vitro and in vivo transgenic models based on the Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology to monitor cell cycle phasing in combination with YAP1 overexpression or downregulation. In the in vivo models, YAP1 overexpressing mice and YAP1 knock-out mice were subjected to unilateral ischemia reperfusion injury (IRI) or glycerol-induced rhabdomyolysis to induce AKI. Polyploid cells have been then characterized by microarray analysis, cell sorting, super-resolution STED microscopy and transmission electron microscopy. Results In vitro, human renal tubular cells undergo polyploidization. The fraction of polyploid cells significantly decreases when YAP1 nuclear translocation is blocked, suggesting a possible involvement of YAP1 in regulating TEC polyploidization. After AKI in mice, the inhibition of YAP1 significantly reduces the number of polyploid cells and worsens kidney function resulting in a dramatic decrease of mouse survival. In contrast, YAP1 overexpression leads to an increase in the number of polyploid cells up to 20% of all TECs, further confirming the role of YAP1 in controlling TEC polyploidization. In YAP1 overexpressing mice, electron microscopy and STED analysis revealed the presence of both mononucleated and binucleated polyploid cells. Strikingly, these mice appear to be more prone to develop tubulointerstitial fibrosis acquiring a marked senescent phenotype along with significant decline in renal function thus suggesting an association between polyploidization and CKD development. Indeed, isolation of polyploid cells proved that these cells actively transcribe and secrete pro-fibrotic and senescent factors confirming their role in CKD progression. Conclusion These data suggest that: 1) polyploidization after AKI is required to preserve renal function in the acute phase of damage and it is essential for survival 2) polyploid cells are pro-fibrotic and senescent leading in the long run to the progression of AKI to CKD.


2016 ◽  
Vol 82 (17) ◽  
pp. 5060-5067 ◽  
Author(s):  
Mariela P. Mezzina ◽  
M. Julia Pettinari

ABSTRACTPhasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies andin silicopredictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have bothin vivoandin vitrochaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


Sign in / Sign up

Export Citation Format

Share Document