scholarly journals The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport

2011 ◽  
Vol 194 (3) ◽  
pp. 459-472 ◽  
Author(s):  
Orly Laufman ◽  
WanJin Hong ◽  
Sima Lev

The conserved oligomeric Golgi (COG) complex has been implicated in the regulation of endosome to trans-Golgi network (TGN) retrograde trafficking in both yeast and mammals. However, the exact mechanisms by which it regulates this transport route remain largely unknown. In this paper, we show that COG interacts directly with the target membrane SNARE (t-SNARE) Syntaxin 6 via the Cog6 subunit. In Cog6-depleted cells, the steady-state level of Syntaxin 6 was markedly reduced, and concomitantly, endosome-to-TGN retrograde traffic was significantly attenuated. Cog6 knockdown also affected the steady-state levels and/or subcellular distributions of Syntaxin 16, Vti1a, and VAMP4 and impaired the assembly of the Syntaxin 6–Syntaxin16–Vti1a–VAMP4 SNARE complex. Remarkably, overexpression of VAMP4, but not of Syntaxin 6, bypassed the requirement for COG and restored endosome-to-TGN trafficking in Cog6-depleted cells. These results suggest that COG directly interacts with specific t-SNAREs and positively regulates SNARE complex assembly, thereby affecting their associated trafficking steps.

2013 ◽  
Vol 24 (18) ◽  
pp. 2907-2917 ◽  
Author(s):  
Kohei Arasaki ◽  
Daichi Takagi ◽  
Akiko Furuno ◽  
Miwa Sohda ◽  
Yoshio Misumi ◽  
...  

Docking and fusion of transport vesicles/carriers with the target membrane involve a tethering factor–mediated initial contact followed by soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)–catalyzed membrane fusion. The multisubunit tethering CATCHR family complexes (Dsl1, COG, exocyst, and GARP complexes) share very low sequence homology among subunits despite likely evolving from a common ancestor and participate in fundamentally different membrane trafficking pathways. Yeast Tip20, as a subunit of the Dsl1 complex, has been implicated in retrograde transport from the Golgi apparatus to the endoplasmic reticulum. Our previous study showed that RINT-1, the mammalian counterpart of yeast Tip20, mediates the association of ZW10 (mammalian Dsl1) with endoplasmic reticulum–localized SNARE proteins. In the present study, we show that RINT-1 is also required for endosome-to–trans-Golgi network trafficking. RINT-1 uncomplexed with ZW10 interacts with the COG complex, another member of the CATCHR family complex, and regulates SNARE complex assembly at the trans-Golgi network. This additional role for RINT-1 may in part reflect adaptation to the demand for more diverse transport routes from endosomes to the trans-Golgi network in mammals compared with those in a unicellular organism, yeast. The present findings highlight a new role of RINT-1 in coordination with the COG complex.


1994 ◽  
Vol 12 (1) ◽  
pp. 47-60 ◽  
Author(s):  
R S Guenette ◽  
H B Corbeil ◽  
J Léger ◽  
K Wong ◽  
V Mézl ◽  
...  

ABSTRACT After weaning, the mammary gland ceases lactation and involutes. The wet weight of the gland decreases by 70% within 4 days of weaning. This involves significant tissue remodelling as the ducts regress and return to the resting state. The presence of apoptotic bodies in the luminal epithelial compartment 2 to 3 days after weaning provides clear evidence that a substantial proportion of the regression is attributable to the induction of active cell death (ACD) of the epithelial cells. These changes in the architecture of the gland were found to be mirrored by changes in gene expression. The steady-state level of β-casein mRNA decreased rapidly after weaning from the high levels seen during lactation to undetectable levels by 8 days after weaning. The steady-state levels of expression of a number of genes associated with ACD, including TRPM-2, tissue transglutaminase (TGase) and poly(ADP-ribose) polymerase (PARP), increased transiently during this time-frame. The steady-state level of TRPM-2 mRNA increased 2 days after weaning, reaching a peak on day 4, and decreasing to undetectable levels by day 8 after weaning. The steady-state levels of two other mRNAs, TGase and PARP, showed very similar kinetics. In contrast, the mRNA for Hsp 27, which has been shown to be induced during prostate regression, was not significantly induced in the regressing mammary gland. In-situ hybridization demonstrated that the TRPM-2, TGase and PARP genes were expressed predominantly in the luminal epithelial cells of the ducts. These cells expressed β-casein mRNA during lactation, and underwent ACD after weaning. While the ultrastructural changes in the mammary gland after weaning, and the induction of TRPM-2, TGase and PARP mRNAs, are reminiscent of apoptosis in the prostate, several features of the process are different. Most notably, the disruption of the secretory processes and the lack of increased expression of Hsp 27 in the regressing mammary gland suggest that there may be a number of important events in ACD that are not common to all cells.


1991 ◽  
Vol 275 (3) ◽  
pp. 645-650 ◽  
Author(s):  
T Sato ◽  
A Ito ◽  
Y Mori ◽  
K Yamashita ◽  
T Hayakawa ◽  
...  

Rabbit uterine cervical fibroblasts produced a large amount of matrix metalloproteinases (MMPs) such as collagenase (MMP-1) and stromelysin (MMP-3) and a small relatively amount of tissue inhibitor of metalloproteinases (TIMP). When cells were treated with progesterone or oestradiol-17 beta, both steroids concurrently decreased the level of procollagenase and prostromelysin in the culture media and the steady-state levels of the respective mRNAs. On the other hand, the level of TIMP in the culture media and the steady-state level of its mRNA were simultaneously increased by these steroids. Similarly, the suppression of production of MMPs and the augmentation of TIMP production by both steroids were observed with interleukin 1 (IL-1)-treated cells, but the action of progesterone was more effective than that of oestradiol-17 beta in the IL-1-untreated and -treated cells. These results suggest that collagenolysis in uterine cervical fibroblasts is negatively regulated by steroid hormones via the acceleration of TIMP production and the suppression of synthesis of MMPs at the pretranslational level.


1984 ◽  
Vol 222 (2) ◽  
pp. 413-417 ◽  
Author(s):  
S Menashi ◽  
K S Authi ◽  
F Carey ◽  
N Crawford

By using density-gradient fractionation and high-voltage free-flow electrophoresis, human platelet membranes were separated into highly purified subfractions of surface (SM) and intracellular (IM) origin. Associated exclusively with the IM fraction is an ATP-dependent Ca2+ uptake that, in the absence of oxalate, reaches steady-state levels in 5-10 min. When Ca2+-EGTA buffers were used to control the external Ca2+ concentrations (range 0.1-50 microM) there was an increase in the intravesicle steady-state level of Ca2+ up to 10 microM external Ca2+ concentration. Above this level the intravesicle space becomes saturated at a concentration between 10 and 20 nmol of Ca2+ X (mg of protein)-1. The ionophore A23187 promotes a rapid and almost total release of the sequestered Ca2+ (greater than 90%, t1/2 1-2 min). The presence of oxalate in the external medium greatly enhances the Ca2+ accumulation to levels as high as 200 nmol X (mg of protein)-1, but the uptake process is more variable and rarely reaches steady-state level even after 2 h incubation. Moreover, accumulation in the presence of oxalate effects ionophore release with less than 80% depletion in 45-60 min. These findings, taken together with the known presence in the platelet of a wide variety of functional and metabolic processes triggered by this cation, suggest that the platelet IM has a key role in controlling cytosolic Ca2+ concentrations.


Author(s):  
Janny M. Yao ◽  
Dongyun Yang ◽  
Mary C. Clark ◽  
Salman Otoukesh ◽  
Thai Cao ◽  
...  

1998 ◽  
Vol 275 (4) ◽  
pp. C1031-C1039 ◽  
Author(s):  
Ilia Voskoboinik ◽  
Karin Söderholm ◽  
Ian A. Cotgreave

Human umbilical vein smooth muscle cells (HUVSMCs) utilize extracellular cystine, glutathione (GSH), and N-acetylcysteine (NAC) to synthesize cellular GSH. Extracellular cystine was effective from 5 μM, whereas GSH and NAC were required at 100 μM for comparable effects. The efficacy of extracellular GSH was dependent on de novo GSH synthesis, indicating a dependence on cellular γ-glutamyltransferase (glutamyl transpeptidase). Coculture of syngenetic HUVSMCs and corresponding human umbilical vein endothelial cells (HUVECs) on porous supports restricted cystine- or GSH-stimulated synthesis of HUVSMC GSH when supplied on the “luminal” endothelial side. Thus HUVSMC GSH rapidly attained a steady-state level below that achieved in the absence of interposed HUVECs. HUVSMCs also readily utilize both reduced ascorbate (AA) and oxidized dehydroascorbate (DHAA) over the range 50–500 μM. Phloretin effectively blocked both AA- and DHAA-stimulated assimilation of intracellular AA, indicating a role for a glucose transporter in their transport. Uptake of extracellular AA was also sensitive to extracellular, but not intracellular, thiol depletion. When AA was applied to the endothelial side of the coculture model, assimilation of intracellular AA in HUVSMCs was restricted to a steady-state level below that achieved by free access.


2008 ◽  
Vol 105 (39) ◽  
pp. 15184-15189 ◽  
Author(s):  
N. Mochizuki ◽  
R. Tanaka ◽  
A. Tanaka ◽  
T. Masuda ◽  
A. Nagatani

Sign in / Sign up

Export Citation Format

Share Document