scholarly journals Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast

2012 ◽  
Vol 199 (5) ◽  
pp. 831-847 ◽  
Author(s):  
Junqi Huang ◽  
Yinyi Huang ◽  
Haochen Yu ◽  
Dhivya Subramanian ◽  
Anup Padmanabhan ◽  
...  

In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly.

2009 ◽  
Vol 20 (8) ◽  
pp. 2160-2173 ◽  
Author(s):  
Colleen T. Skau ◽  
Erin M. Neidt ◽  
David R. Kovar

Like animal cells, fission yeast divides by assembling actin filaments into a contractile ring. In addition to formin Cdc12p and profilin, the single tropomyosin isoform SpTm is required for contractile ring assembly. Cdc12p nucleates actin filaments and remains processively associated with the elongating barbed end while driving the addition of profilin-actin. SpTm is thought to stabilize mature filaments, but it is not known how SpTm localizes to the contractile ring and whether SpTm plays a direct role in Cdc12p-mediated actin polymerization. Using “bulk” and single actin filament assays, we discovered that Cdc12p can recruit SpTm to actin filaments and that SpTm has diverse effects on Cdc12p-mediated actin assembly. On its own, SpTm inhibits actin filament elongation and depolymerization. However, Cdc12p completely overcomes the combined inhibition of actin nucleation and barbed end elongation by profilin and SpTm. Furthermore, SpTm increases the length of Cdc12p-nucleated actin filaments by enhancing the elongation rate twofold and by allowing them to anneal end to end. In contrast, SpTm ultimately turns off Cdc12p-mediated elongation by “trapping” Cdc12p within annealed filaments or by dissociating Cdc12p from the barbed end. Therefore, SpTm makes multiple contributions to contractile ring assembly during and after actin polymerization.


2013 ◽  
Vol 203 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Valerie C. Coffman ◽  
Jennifer A. Sees ◽  
David R. Kovar ◽  
Jian-Qiu Wu

Both de novo–assembled actin filaments at the division site and existing filaments recruited by directional cortical transport contribute to contractile ring formation during cytokinesis. However, it is unknown which source is more important. Here, we show that fission yeast formin For3 is responsible for node condensation into clumps in the absence of formin Cdc12. For3 localization at the division site depended on the F-BAR protein Cdc15, and for3 deletion was synthetic lethal with mutations that cause defects in contractile ring formation. For3 became essential in cells expressing N-terminal truncations of Cdc12, which were more active in actin assembly but depended on actin filaments for localization to the division site. In tetrad fluorescence microscopy, double mutants of for3 deletion and cdc12 truncations were severely defective in contractile ring assembly and constriction, although cortical transport of actin filaments was normal. Together, these data indicate that different formins cooperate in cytokinesis and that de novo actin assembly at the division site is predominant for contractile ring formation.


2014 ◽  
Vol 205 (3) ◽  
pp. 357-375 ◽  
Author(s):  
Ning Wang ◽  
Libera Lo Presti ◽  
Yi-Hua Zhu ◽  
Minhee Kang ◽  
Zhengrong Wu ◽  
...  

The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51’s localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8+ cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.


2016 ◽  
Vol 214 (2) ◽  
pp. 167-179 ◽  
Author(s):  
Qing Tang ◽  
Neil Billington ◽  
Elena B. Krementsova ◽  
Carol S. Bookwalter ◽  
Matthew Lord ◽  
...  

Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51–Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51–Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly.


2021 ◽  
Vol 22 (4) ◽  
pp. 1991
Author(s):  
Jimok Yoon ◽  
Heng Wu ◽  
Ruei-Jiun Hung ◽  
Jonathan R. Terman

To change their behaviors, cells require actin proteins to assemble together into long polymers/filaments—and so a critical goal is to understand the factors that control this actin filament (F-actin) assembly and stability. We have identified a family of unusual actin regulators, the MICALs, which are flavoprotein monooxygenase/hydroxylase enzymes that associate with flavin adenine dinucleotide (FAD) and use the co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH) in Redox reactions. F-actin is a specific substrate for these MICAL Redox enzymes, which oxidize specific amino acids within actin to destabilize actin filaments. Furthermore, this MICAL-catalyzed reaction is reversed by another family of Redox enzymes (SelR/MsrB enzymes)—thereby revealing a reversible Redox signaling process and biochemical mechanism regulating actin dynamics. Interestingly, in addition to the MICALs’ Redox enzymatic portion through which MICALs covalently modify and affect actin, MICALs have multiple other domains. Less is known about the roles of these other MICAL domains. Here we provide approaches for obtaining high levels of recombinant protein for the Redox only portion of Mical and demonstrate its catalytic and F-actin disassembly activity. These results provide a ground state for future work aimed at defining the role of the other domains of Mical — including characterizing their effects on Mical’s Redox enzymatic and F-actin disassembly activity.


2005 ◽  
Vol 16 (7) ◽  
pp. 3107-3116 ◽  
Author(s):  
Anindya Ghosh-Roy ◽  
Bela S. Desai ◽  
Krishanu Ray

Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin–dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.


2004 ◽  
Vol 186 (12) ◽  
pp. 3951-3959 ◽  
Author(s):  
Qin Sun ◽  
William Margolin

ABSTRACT In Escherichia coli, assembly of the FtsZ ring (Z ring) at the cell division site is negatively regulated by the nucleoid in a phenomenon called nucleoid occlusion (NO). Previous studies have indicated that chromosome packing plays a role in NO, as mukB mutants grown in rich medium often exhibit FtsZ rings on top of diffuse, unsegregated nucleoids. To address the potential role of overall nucleoid structure on NO, we investigated the effects of disrupting chromosome structure on Z-ring positioning. We found that NO was mostly normal in cells with inactivated DNA gyrase or in mukB-null mutants lacking topA, although some suppression of NO was evident in the latter case. Previous reports suggesting that transcription, translation, and membrane insertion of proteins (“transertion”) influence nucleoid structure prompted us to investigate whether disruption of these activities had effects on NO. Blocking transcription caused nucleoids to become diffuse, and FtsZ relocalized to multiple bands on top of these nucleoids, biased towards midcell. This suggested that these diffuse nucleoids were defective in NO. Blocking translation with chloramphenicol caused characteristic nucleoid compaction, but FtsZ rarely assembled on top of these centrally positioned nucleoids. This suggested that NO remained active upon translation inhibition. Blocking protein secretion by thermoinduction of a secA(Ts) strain caused a chromosome segregation defect similar to that in parC mutants, and NO was active. Although indirect effects are certainly possible with these experiments, the above data suggest that optimum NO activity may require specific organization and structure of the nucleoid.


2012 ◽  
Vol 23 (7) ◽  
pp. 1181-1195 ◽  
Author(s):  
Yanfang Ye ◽  
I-Ju Lee ◽  
Kurt W. Runge ◽  
Jian-Qiu Wu

Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2∆ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 84-84
Author(s):  
Velia M. Fowler ◽  
Zhenhua Sui ◽  
Roberta B. Nowak ◽  
Nancy E. Kim ◽  
Andrea Bacconi

Abstract Abstract 84 Tropomodulin1 (Tmod1) binds tropomyosin and caps the pointed ends of the short actin filaments in the spectrin-actin network of red blood cells (RBCs). Tmod1-null mice display a mild sphero-elliptocytic anemia due to mis-regulation of actin filament lengths and a disrupted membrane skeleton. The mild phenotype may be explained by the compensation of Tmod3, which is not found in wild-type RBCs but exists in Tmod1-null RBCs (one-fifth level of Tmod1). Our experiments with human erythroblasts show that the expression of Tmod1 increases during terminal differentiation while the level of Tmod3 is relatively constant, only decreasing at a very late stage. To investigate the role of Tmod3 in RBCs, we created a Tmod3 knockout mouse from ES cells (#RRF004, BayGenomics) with a gene-trap vector insertion into intron 1 of Tmod3. Both RT-PCR and western-blot results show that the expression of Tmod3 is abolished in Tmod3−/− mice. Tmod3+/− mice are viable and fertile, while Tmod3−/− animals are embryonic lethal, with most nulls dying between E16.5-E17.5. Tmod3−/− embryos are pale and anemic with a smaller fetal liver, suggesting that the lethality might be due to defective definitive erythropoiesis. This is supported by analysis of peripheral blood, which shows fewer definitive enucleated erythroblasts in Tmod3-null embryos. Flow-cytometry of fetal liver erythroblasts labeled with Ter119 and CD71 indicates that the late stage R3 population is reduced by about one-third in absence of Tmod3, while R1-R2 populations are somewhat increased. In addition, Annexin V staining shows a two-fold increase in apoptotic cells in the fetal liver, most of which are in the R1 population. Measurement of enucleation frequency in R populations shows a marked reduction of enucleated cells as the erythroblasts mature through the R3-R5 populations. These data indicate that definitive erythropoiesis is defective due to impaired erythroblast terminal differentiation in absence of Tmod3. To determine the underlying mechanisms, we used histology and confocal fluorescence microscopy to investigate the morphology and actin cytoskeleton of erythroblasts in process of enucleation. These experiments show abnormal nuclear morphology in orthochromatic Tmod3-null fetal liver erythroblasts, as well as defective F-actin contractile ring assembly in Tmod3−/− erythroblasts in process of nuclear expulsion, suggesting a role for Tmod3 in enucleation. Since macrophages are required for production of definitive erythroblasts and enucleation in vivo, we explored the role of macrophages in the Tmod3−/− phenotype. Immunofluorescence staining of fetal liver cryosections with F4/80, Ter119 and Hoechst reveals that macrophages display strikingly less dendritic morphologies in the Tmod3−/− mice, with macrophages sometimes containing Ter119-positive nucleated erythroblasts. Isolation of native erythroblast-macrophage islands from fetal liver demonstrates that islands isolated from Tmod3−/− fetal livers contain fewer erythroblasts compared with those from wild-type fetal liver. Further, reconstitution experiments indicate that erythroblasts from Tmod3−/− fetal liver are unable to form normal islands, indicating that Tmod3 function is required in erythroblasts. In conclusion, our study shows that knockout of Tmod3 leads to defective definitive erythropoiesis and embryonic lethality in mice, due to defects in island formation and abnormal enucleation. These data suggest that Tmod3-mediated actin remodeling may be required for erythroblast-macrophage adhesion as well as contractile ring assembly during erythroblast enucleation. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 22 (21) ◽  
pp. 4016-4028 ◽  
Author(s):  
Brian R. Graziano ◽  
Amy Grace DuPage ◽  
Alphee Michelot ◽  
Dennis Breitsprecher ◽  
James B. Moseley ◽  
...  

Formins are a conserved family of actin assembly–promoting factors with diverse biological roles, but how their activities are regulated in vivo is not well understood. In Saccharomyces cerevisiae, the formins Bni1 and Bnr1 are required for the assembly of actin cables and polarized cell growth. Proper cable assembly further requires Bud6. Previously it was shown that Bud6 enhances Bni1-mediated actin assembly in vitro, but the biochemical mechanism and in vivo role of this activity were left unclear. Here we demonstrate that Bud6 specifically stimulates the nucleation rather than the elongation phase of Bni1-mediated actin assembly, defining Bud6 as a nucleation-promoting factor (NPF) and distinguishing its effects from those of profilin. We generated alleles of Bud6 that uncouple its interactions with Bni1 and G-actin and found that both interactions are critical for NPF activity. Our data indicate that Bud6 promotes filament nucleation by recruiting actin monomers to Bni1. Genetic analysis of the same alleles showed that Bud6 regulation of formin activity is critical for normal levels of actin cable assembly in vivo. Our results raise important mechanistic parallels between Bud6 and WASP, as well as between Bud6 and other NPFs that interact with formins such as Spire.


Sign in / Sign up

Export Citation Format

Share Document