scholarly journals Genome maintenance in pluripotent stem cells

2014 ◽  
Vol 204 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Uri Weissbein ◽  
Nissim Benvenisty ◽  
Uri Ben-David

Pluripotent stem cells (PSCs) must maintain their proper genomic content in order to preserve appropriate self-renewal and differentiation capacities. However, their prolonged in vitro propagation, as well as the environmental culture conditions, present serious challenges to genome maintenance. Recent work has been focused on potential means to alleviate the genomic insults experienced by PSCs, and to detect them as soon as they arise, in order to prevent the detrimental consequences of these genomic aberrations on PSC application in basic research and regenerative medicine.

Author(s):  
Mayuko Kano ◽  
Hidetaka Suga ◽  
Hiroshi Arima

Abstract The hypothalamus and pituitary have been identified to play essential roles in maintaining homeostasis. Various diseases can disrupt the functions of these systems, which can often result in serious lifelong symptoms. The current treatment for hypopituitarism involves hormone replacement therapy. However, exogenous drug administration cannot mimic the physiological changes that are a result of hormone requirements. Therefore, patients are at a high risk of severe hormone deficiency, including adrenal crisis. Pluripotent stem cells (PSCs) self-proliferate and differentiate into all types of cells. The generation of endocrine tissues from PSCs has been considered as another new treatment for hypopituitarism. Our colleagues established a three-dimensional culture method for embryonic stem cells (ESCs). In this culture, the ESC-derived aggregates exhibit self-organization and spontaneous formation of highly ordered patterning. Recent results have shown that strict removal of exogenous patterning factors during early differentiation efficiently induces rostral hypothalamic progenitors from mouse ESCs. These hypothalamic progenitors generate vasopressinergic neurons, which release neuropeptides upon exogenous stimulation. Subsequently, we reported adenohypophysis tissue self-formation in three-dimensional cultures of mouse ESCs. The ESCs were found to differentiate into both non-neural oral ectoderm and hypothalamic neuroectoderm in adjacent layers. Interactions between the two tissues appear to be critically important for in vitro induction of a Rathke's pouch-like developing embryo. Various endocrine cells were differentiated from non-neural ectoderm. The induced corticotrophs efficiently secreted adrenocorticotropic hormone when engrafted in vivo, which rescued hypopituitary hosts. For future regenerative medicine, generation of hypothalamic and pituitary tissues from human PSCs is necessary. We and other groups succeeded in establishing a differentiation method with the use of human PSCs. Researchers could use these methods for models of human diseases to elucidate disease pathology or screen potential therapeutics.


2019 ◽  
Vol 8 (11) ◽  
pp. 1782 ◽  
Author(s):  
Antonio Palladino ◽  
Isabella Mavaro ◽  
Carmela Pizzoleo ◽  
Elena De Felice ◽  
Carla Lucini ◽  
...  

Tissue engineering (TE) pursues the ambitious goal to heal damaged tissues. One of the most successful TE approaches relies on the use of scaffolds specifically designed and fabricated to promote tissue growth. During regeneration the guidance of biological events may be essential to sustain vasculature neoformation inside the engineered scaffold. In this context, one of the most effective strategies includes the incorporation of vasculature forming cells, namely endothelial cells (EC), into engineered constructs. However, the most common EC sources currently available, intended as primary cells, are affected by several limitations that make them inappropriate to personalized medicine. Human induced Pluripotent Stem Cells (hiPSC), since the time of their discovery, represent an unprecedented opportunity for regenerative medicine applications. Unfortunately, human induced Pluripotent Stem Cells-Endothelial Cells (hiPSC-ECs) still display significant safety issues. In this work, we reviewed the most effective protocols to induce pluripotency, to generate cells displaying the endothelial phenotype and to perform an efficient and safe cell selection. We also provide noteworthy examples of both in vitro and in vivo applications of hiPSC-ECs in order to highlight their ability to form functional blood vessels. In conclusion, we propose hiPSC-ECs as the preferred source of endothelial cells currently available in the field of personalized regenerative medicine.


2009 ◽  
Vol 390 (10) ◽  
Author(s):  
Komal Loya ◽  
Reto Eggenschwiler ◽  
Kinarm Ko ◽  
Malte Sgodda ◽  
Francoise André ◽  
...  

Abstract In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Chen Zhao ◽  
Cuida Meng ◽  
Na Cui ◽  
Jichao Sha ◽  
Liwei Sun ◽  
...  

The salivary gland is composed of an elegant epithelial network that secrets saliva and maintains oral homeostasis. While cell lines and animal models furthered our understanding of salivary gland biology, they cannot replicate key aspects of the human salivary gland tissue, particularly the complex architecture and microenvironmental features that dictate salivary gland function. Organoid cultures provide an alternative system to recapitulate salivary gland tissue in vitro, and salivary gland organoids have been generated from pluripotent stem cells and adult stem/progenitor cells. In this review, we describe salivary gland organoids, the advances and limitations, and the promising potential for regenerative medicine.


Author(s):  
Warunya Chakritbudsabong ◽  
Somjit Chaiwattanarungruengpaisan ◽  
Ladawan Sariya ◽  
Sirikron Pamonsupornvichit ◽  
Joao N. Ferreira ◽  
...  

Porcine species have been used in preclinical transplantation models for assessing the efficiency and safety of transplants before their application in human trials. Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies in the reprogramming of piPSCs and the maintenance of their self-renewal and pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital role in the induction of pluripotency in humans. To investigate whether this factor is similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The colony morphology and chromosomal stability of these piPSC lines were examined and their pluripotency properties were characterized by investigating both their expression of pluripotency-associated genes and proteins and in vitro and in vivo differentiation capabilities. Alkaline phosphatase assay revealed the reprogramming efficiencies to be 0.33 and 0.17% for the 4TF and 5TF approaches, respectively, but the maintenance of self-renewal and pluripotency until passage 40 was 6.67 and 100%, respectively. Most of the 4TF-piPSC colonies were flat in shape, showed weak positivity for alkaline phosphatase, and expressed a significantly high level of SSEA-4 protein, except for one cell line (VSMUi001-A) whose properties were similar to those of the 5TF-piPSCs; that is, tightly packed and dome-like in shape, markedly positive for alkaline phosphatase, and expressing endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28), significantly high levels of pluripotent proteins (OCT4, SOX2, NANOG, LIN28, and SSEA-1), and a significantly low level of SSEA-4 protein. VSMUi001-A and all 5F-piPSC lines formed embryoid bodies, underwent spontaneous cardiogenic differentiation with cardiac beating, expressed cardiomyocyte markers, and developed teratomas. In conclusion, in addition to the 4TF, LIN28 is required for the effective induction of piPSCs and the maintenance of their long-term self-renewal and pluripotency toward the development of all germ layers. These piPSCs have the potential applicability for veterinary science.


2021 ◽  
Author(s):  
Philippe J.R. Cohen ◽  
Elisa Luquet ◽  
Justine Pletenka ◽  
Andrea Leonard ◽  
Elise Warter ◽  
...  

Human pluripotent stem cells (hPSCs) have emerged as the most promising cellular source for cell therapies. To overcome scale up limitations of classical 2D culture systems, suspension cultures have been developed to meet the need of large-scale culture in regenerative medicine. Despite constant improvements, current protocols relying on the generation of micro-carriers or cell aggregates only achieve moderate amplification performance. Here, guided by reports showing that hPSCs can self-organize in vitro into cysts reminiscent of the epiblast stage in embryo development, we developed a physio-mimetic approach for hPSC culture. We engineered stem cell niche microenvironments inside microfluidics-assisted core-shell microcapsules. We demonstrate that lumenized three-dimensional colonies maximize viability and expansion rates while maintaining pluripotency. By optimizing capsule size and culture conditions, we scale-up this method to industrial scale stirred tank bioreactors and achieve an unprecedented hPSC amplification rate of 282-fold in 6.5 days.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tackla S. Winston ◽  
Kantaphon Suddhapas ◽  
Chenyan Wang ◽  
Rafael Ramos ◽  
Pranav Soman ◽  
...  

Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73, CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Thomas Moreau ◽  
Amanda L. Evans ◽  
Louella Vasquez ◽  
Marloes R. Tijssen ◽  
Ying Yan ◽  
...  

Abstract The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.


Sign in / Sign up

Export Citation Format

Share Document