scholarly journals Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p

2014 ◽  
Vol 207 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Dongmei Liu ◽  
Peter Novick

The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p–Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2.

2012 ◽  
Vol 11 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Fabien Lefèbvre ◽  
Valérie Prouzet-Mauléon ◽  
Michel Hugues ◽  
Marc Crouzet ◽  
Aurélie Vieillemard ◽  
...  

ABSTRACT Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae , the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P 2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


1998 ◽  
Vol 9 (7) ◽  
pp. 1725-1739 ◽  
Author(s):  
Dagmar Roth ◽  
Wei Guo ◽  
Peter Novick

The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeastSaccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother–daughter connection during cell cycle progression.


2013 ◽  
Vol 202 (3) ◽  
pp. 509-526 ◽  
Author(s):  
David Shen ◽  
Hua Yuan ◽  
Alex Hutagalung ◽  
Avani Verma ◽  
Daniel Kümmel ◽  
...  

A screen for mutations that affect the recruitment of the exocyst to secretory vesicles identified genes encoding clathrin and proteins that associate or colocalize with clathrin at sites of endocytosis. However, no significant colocalization of the exocyst with clathrin was seen, arguing against a direct role in exocyst recruitment. Rather, these components are needed to recycle the exocytic vesicle SNAREs Snc1p and Snc2p from the plasma membrane into new secretory vesicles where they act to recruit the exocyst. We observe a direct interaction between the exocyst subunit Sec6p and the latter half of the SNARE motif of Snc2p. An snc2 mutation that specifically disrupts this interaction led to exocyst mislocalization and a block in exocytosis in vivo without affecting liposome fusion in vitro. Overexpression of Sec4p partially suppressed the exocyst localization defects of mutations in clathrin and clathrin-associated components. We propose that the exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins. This could help to confer both specificity and directionality to vesicular traffic.


2021 ◽  
Vol 7 (2) ◽  
pp. eaba7803
Author(s):  
Maika S. Deffieu ◽  
Ieva Cesonyte ◽  
François Delalande ◽  
Gaelle Boncompain ◽  
Cristina Dorobantu ◽  
...  

The biosynthetic secretory pathway is particularly challenging to investigate as it is underrepresented compared to the abundance of the other intracellular trafficking routes. Here, we combined the retention using selective hook (RUSH) to a CRISPR-Cas9 gene editing approach (eRUSH) and identified Rab7-harboring vesicles as an important intermediate compartment of the Golgi–to–plasma membrane transport of neosynthesized transferrin receptor (TfR). These vesicles did not exhibit degradative properties and were not associated to Rab6A-harboring vesicles. Rab7A was transiently associated to neosynthetic TfR-containing post–Golgi vesicles but dissociated before fusion with the plasma membrane. Together, our study reveals a role for Rab7 in the biosynthetic secretory pathway of the TfR, highlighting the diversity of the secretory vesicles’ nature.


1999 ◽  
Vol 10 (12) ◽  
pp. 4149-4161 ◽  
Author(s):  
Eric Grote ◽  
Peter J. Novick

Fusion of post-Golgi secretory vesicles with the plasma membrane in yeast requires the function of a Rab protein, Sec4p, and a set of v- and t-SNAREs, the Snc, Sso, and Sec9 proteins. We have tested the hypothesis that a selective interaction between Sec4p and the exocytic SNAREs is responsible for ensuring that secretory vesicles fuse with the plasma membrane but not with intracellular organelles. Assembly of Sncp and Ssop into a SNARE complex is defective in asec4-8 mutant strain. However, Snc2p binds in vivo to many other syntaxin-like t-SNAREs, and binding of Sncp to the endosomal/Golgi t-SNARE Tlg2p is also reduced in sec4-8cells. In addition, binding of Sncp to Ssop is reduced by mutations in two other Rab genes and four non-Rab genes that block the secretory pathway before the formation of secretory vesicles. In an alternate approach to look for selective Rab–SNARE interactions, we report that the nucleotide-free form of Sec4p coimmunoprecipitates with Ssop. However, Rab–SNARE binding is nonselective, because the nucleotide-free forms of six Rab proteins bind with similar low efficiency to three SNARE proteins, Ssop, Pep12p, and Sncp. We conclude that Rabs and SNAREs do not cooperate to specify the target membrane.


2007 ◽  
Vol 18 (11) ◽  
pp. 4483-4492 ◽  
Author(s):  
Jianglan Liu ◽  
Xiaofeng Zuo ◽  
Peng Yue ◽  
Wei Guo

The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through its direct interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Furthermore, we have identified key conserved residues at the C-terminus of Exo70 that are crucial for the interaction of Exo70 with PI(4,5)P2. Disrupting Exo70-PI(4,5)P2 interaction abolished the membrane association of Exo70. We have also found that wild-type Exo70 but not the PI(4,5)P2-binding–deficient Exo70 mutant is capable of recruiting other exocyst components to the PM. Using the ts045 vesicular stomatitis virus glycoprotein trafficking assay, we demonstrate that Exo70-PI(4,5)P2 interaction is critical for the docking and fusion of post-Golgi secretory vesicles, but not for their transport to the PM.


2003 ◽  
Vol 370 (2) ◽  
pp. 641-649 ◽  
Author(s):  
Lorena ARRASTUA ◽  
Eider SAN SEBASTIAN ◽  
Ana F. QUINCOCES ◽  
Claude ANTONY ◽  
Unai UGALDE

The final step in the secretory pathway, which is the fusion event between secretory vesicles and the plasma membrane, was reconstructed using highly purified secretory vesicles and cytoplasmic-side-out plasma membrane vesicles from the yeast Saccharomyces cerevisiae. Both organelle preparations were obtained from a sec 6-4 temperature-sensitive mutant. Fusion was monitored by means of a fluorescence assay based on the dequenching of the lipophilic fluorescent probe octadecylrhodamine B-chloride (R18). The probe was incorporated into the membrane of secretory vesicles, and it diluted in unlabelled cytoplasmic-side-out plasma membrane vesicles as the fusion process took place. The obtained experimental dequenching curves were found by mathematical analysis to consist of two independent but simultaneous processes. Whereas one of them reflected the fusion process between both vesicle populations as confirmed by its dependence on the assay conditions, the other represented a non-specific transfer of the probe. The fusion process may now be examined in detail using the preparation, validation and analytical methods developed in this study.


2011 ◽  
Vol 39 (5) ◽  
pp. 1115-1119 ◽  
Author(s):  
Lisa M. Bond ◽  
Hemma Brandstaetter ◽  
James R. Sellers ◽  
John Kendrick-Jones ◽  
Folma Buss

In eukaryotes, the final steps in both the regulated and constitutive secretory pathways can be divided into four distinct stages: (i) the ‘approach’ of secretory vesicles/granules to the PM (plasma membrane), (ii) the ‘docking’ of these vesicles/granules at the membrane itself, (iii) the ‘priming’ of the secretory vesicles/granules for the fusion process, and, finally, (iv) the ‘fusion’ of vesicular/granular membranes with the PM to permit content release from the cell. Recent work indicates that non-muscle myosin II and the unconventional myosin motor proteins in classes 1c/1e, Va and VI are specifically involved in these final stages of secretion. In the present review, we examine the roles of these myosins in these stages of the secretory pathway and the implications of their roles for an enhanced understanding of secretion in general.


2018 ◽  
Vol 217 (10) ◽  
pp. 3512-3530 ◽  
Author(s):  
Mikael V. Garabedian ◽  
Tatiana Stanishneva-Konovalova ◽  
Chenyu Lou ◽  
Thomas J. Rands ◽  
Luther W. Pollard ◽  
...  

Formins are essential actin assembly factors whose activities are controlled by a diverse array of binding partners. Until now, most formin ligands have been studied on an individual basis, leaving open the question of how multiple inputs are integrated to regulate formins in vivo. Here, we show that the F-BAR domain of Saccharomyces cerevisiae Hof1 interacts with the FH2 domain of the formin Bnr1 and blocks actin nucleation. Electron microscopy of the Hof1–Bnr1 complex reveals a novel dumbbell-shaped structure, with the tips of the F-BAR holding two FH2 dimers apart. Deletion of Hof1’s F-BAR domain in vivo results in disorganized actin cables and secretory defects. The formin-binding protein Bud6 strongly alleviates Hof1 inhibition in vitro, and bud6Δ suppresses hof1Δ defects in vivo. Whereas Hof1 stably resides at the bud neck, we show that Bud6 is delivered to the neck on secretory vesicles. We propose that Hof1 and Bud6 functions are intertwined as a stationary inhibitor and a mobile activator, respectively.


2000 ◽  
Vol 11 (2) ◽  
pp. 647-661 ◽  
Author(s):  
Hui Jin ◽  
David C. Amberg

Aip3p/Bud6p is a regulator of cell and cytoskeletal polarity inSaccharomyces cerevisiae that was previously identified as an actin-interacting protein. Actin-interacting protein 3 (Aip3p) localizes at the cell cortex where cytoskeleton assembly must be achieved to execute polarized cell growth, and deletion ofAIP3 causes gross defects in cell and cytoskeletal polarity. We have discovered that Aip3p localization is mediated by the secretory pathway. Mutations in early- or late-acting components of the secretory apparatus lead to Aip3p mislocalization. Biochemical data show that a pool of Aip3p is associated with post-Golgi secretory vesicles. An investigation of the sequences within Aip3p necessary for Aip3p localization has identified a sequence within the N terminus of Aip3p that is sufficient for directing Aip3p localization. Replacement of the N terminus of Aip3p with a homologous region from aSchizosaccharomyces pombe protein allows for normal Aip3p localization, indicating that the secretory pathway–mediated Aip3p localization pathway is conserved. Delivery of Aip3p also requires the type V myosin motor Myo2p and its regulatory light-chain calmodulin. These data suggest that one function of calmodulin is to activate Myo2p's activity in the secretory pathway; this function is likely the polarized movement of late secretory vesicles and associated Aip3p on actin cables.


Sign in / Sign up

Export Citation Format

Share Document