scholarly journals The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron

2015 ◽  
Vol 209 (2) ◽  
pp. 261-273 ◽  
Author(s):  
Gregor Habeck ◽  
Felix A. Ebner ◽  
Hiroko Shimada-Kreft ◽  
Stefan G. Kreft

Aberrant endoplasmic reticulum (ER) proteins are eliminated by ER-associated degradation (ERAD). This process involves protein retrotranslocation into the cytosol, ubiquitylation, and proteasomal degradation. ERAD substrates are classified into three categories based on the location of their degradation signal/degron: ERAD-L (lumen), ERAD-M (membrane), and ERAD-C (cytosol) substrates. In Saccharomyces cerevisiae, the membrane proteins Hrd1 and Doa10 are the predominant ERAD ubiquitin-protein ligases (E3s). The current notion is that ERAD-L and ERAD-M substrates are exclusively handled by Hrd1, whereas ERAD-C substrates are recognized by Doa10. In this paper, we identify the transmembrane (TM) protein Sec61 β-subunit homologue 2 (Sbh2) as a Doa10 substrate. Sbh2 is part of the trimeric Ssh1 complex involved in protein translocation. Unassembled Sbh2 is rapidly degraded in a Doa10-dependent manner. Intriguingly, the degron maps to the Sbh2 TM region. Thus, in contrast to the prevailing view, Doa10 (and presumably its human orthologue) has the capacity for recognizing intramembrane degrons, expanding its spectrum of substrates.

Science ◽  
2018 ◽  
Vol 363 (6422) ◽  
pp. 84-87 ◽  
Author(s):  
Samuel Itskanov ◽  
Eunyong Park

The Sec61 protein-conducting channel mediates transport of many proteins, such as secretory proteins, across the endoplasmic reticulum (ER) membrane during or after translation. Posttranslational transport is enabled by two additional membrane proteins associated with the channel, Sec63 and Sec62, but its mechanism is poorly understood. We determined a structure of the Sec complex (Sec61-Sec63-Sec71-Sec72) from Saccharomyces cerevisiae by cryo–electron microscopy (cryo-EM). The structure shows that Sec63 tightly associates with Sec61 through interactions in cytosolic, transmembrane, and ER-luminal domains, prying open Sec61’s lateral gate and translocation pore and thus activating the channel for substrate engagement. Furthermore, Sec63 optimally positions binding sites for cytosolic and luminal chaperones in the complex to enable efficient polypeptide translocation. Our study provides mechanistic insights into eukaryotic posttranslational protein translocation.


2005 ◽  
Vol 169 (6) ◽  
pp. 897-908 ◽  
Author(s):  
Cosima Luedeke ◽  
Stéphanie Buvelot Frei ◽  
Ivo Sbalzarini ◽  
Heinz Schwarz ◽  
Anne Spang ◽  
...  

Polarized cells frequently use diffusion barriers to separate plasma membrane domains. It is unknown whether diffusion barriers also compartmentalize intracellular organelles. We used photobleaching techniques to characterize protein diffusion in the yeast endoplasmic reticulum (ER). Although a soluble protein diffused rapidly throughout the ER lumen, diffusion of ER membrane proteins was restricted at the bud neck. Ultrastructural studies and fluorescence microscopy revealed the presence of a ring of smooth ER at the bud neck. This ER domain and the restriction of diffusion for ER membrane proteins through the bud neck depended on septin function. The membrane-associated protein Bud6 localized to the bud neck in a septin-dependent manner and was required to restrict the diffusion of ER membrane proteins. Our results indicate that Bud6 acts downstream of septins to assemble a fence in the ER membrane at the bud neck. Thus, in polarized yeast cells, diffusion barriers compartmentalize the ER and the plasma membrane along parallel lines.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Brian G Peterson ◽  
Morgan L Glaser ◽  
Tom A Rapoport ◽  
Ryan D Baldridge

Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1’s deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex.


2020 ◽  
Vol 295 (47) ◽  
pp. 16113-16120
Author(s):  
Avery M. Runnebohm ◽  
Kyle A. Richards ◽  
Courtney Broshar Irelan ◽  
Samantha M. Turk ◽  
Halie E. Vitali ◽  
...  

Translocation of proteins across biological membranes is essential for life. Proteins that clog the endoplasmic reticulum (ER) translocon prevent the movement of other proteins into the ER. Eukaryotes have multiple translocon quality control (TQC) mechanisms to detect and destroy proteins that persistently engage the translocon. TQC mechanisms have been defined using a limited panel of substrates that aberrantly occupy the channel. The extent of substrate overlap among TQC pathways is unknown. In this study, we found that two TQC enzymes, the ER-associated degradation ubiquitin ligase Hrd1 and zinc metalloprotease Ste24, promote degradation of characterized translocon-associated substrates of the other enzyme in Saccharomyces cerevisiae. Although both enzymes contribute to substrate turnover, our results suggest a prominent role for Hrd1 in TQC. Yeast lacking both Hrd1 and Ste24 exhibit a profound growth defect, consistent with overlapping function. Remarkably, two mutations that mildly perturb post-translational translocation and reduce the extent of aberrant translocon engagement by a model substrate diminish cellular dependence on TQC enzymes. Our data reveal previously unappreciated mechanistic complexity in TQC substrate detection and suggest that a robust translocon surveillance infrastructure maintains functional and efficient translocation machinery.


2016 ◽  
Vol 27 (6) ◽  
pp. 930-940 ◽  
Author(s):  
Yuichiro Kida ◽  
Yudai Ishihara ◽  
Hidenobu Fujita ◽  
Yukiko Onishi ◽  
Masao Sakaguchi

Many membrane proteins are integrated into the endoplasmic reticulum membrane through the protein-conducting channel, the translocon. Transmembrane segments with insufficient hydrophobicity for membrane integration are frequently found in multispanning membrane proteins, and such marginally hydrophobic (mH) segments should be accommodated, at least transiently, at the membrane. Here we investigated how mH-segments stall at the membrane and their stability. Our findings show that mH-segments can be retained at the membrane without moving into the lipid phase and that such segments flank Sec61α, the core channel of the translocon, in the translational intermediate state. The mH-segments are gradually transferred from the Sec61 channel to the lipid environment in a hydrophobicity-dependent manner, and this lateral movement may be affected by the ribosome. In addition, stalling mH-segments allow for insertion of the following transmembrane segment, forming an Ncytosol/Clumen orientation, suggesting that mH-segments can move laterally to accommodate the next transmembrane segment. These findings suggest that mH-segments may be accommodated at the ER membrane with lateral fluctuation between the Sec61 channel and the lipid phase.


2005 ◽  
Vol 25 (17) ◽  
pp. 7696-7710 ◽  
Author(s):  
Hironori Inadome ◽  
Yoichi Noda ◽  
Hiroyuki Adachi ◽  
Koji Yoda

ABSTRACT The Golgi apparatus consists of a set of vesicular compartments which are distinguished by their marker proteins. These compartments are physically separated in the Saccharomyces cerevisiae cell. To characterize them extensively, we immunoisolated vesicles carrying either of the SNAREs Sed5 or Tlg2, the markers of the early and late Golgi compartments, respectively, and analyzed the membrane proteins. The composition of proteins was mostly consistent with the position of each compartment in the traffic. We found six uncharacterized but evolutionarily conserved proteins and named them Svp26 (Sed5 compartment vesicle protein of 26 kDa), Tvp38, Tvp23, Tvp18, Tvp15 (Tlg2 compartment vesicle proteins of 38, 23, 18, and 15 kDa), and Gvp36 (Golgi vesicle protein of 36 kDa). The localization of Svp26 in the early Golgi compartment was confirmed by microscopic and biochemical means. Immunoprecipitation indicated that Svp26 binds to itself and a Golgi mannosyltransferase, Ktr3. In the absence of Svp26, a considerable portion of Ktr3 was mislocalized in the endoplasmic reticulum. Our data suggest that Svp26 has a novel role in retention of a subset of membrane proteins in the early Golgi compartments.


2013 ◽  
Vol 24 (11) ◽  
pp. 1765-1775 ◽  
Author(s):  
Kunio Nakatsukasa ◽  
Jeffrey L. Brodsky ◽  
Takumi Kamura

During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.


2013 ◽  
Vol 24 (19) ◽  
pp. 3069-3084 ◽  
Author(s):  
Judith Kraut-Cohen ◽  
Evgenia Afanasieva ◽  
Liora Haim-Vilmovsky ◽  
Boris Slobodin ◽  
Ido Yosef ◽  
...  

mRNAs encoding secreted/membrane proteins (mSMPs) are believed to reach the endoplasmic reticulum (ER) in a translation-dependent manner to confer protein translocation. Evidence exists, however, for translation- and signal recognition particle (SRP)–independent mRNA localization to the ER, suggesting that there are alternate paths for RNA delivery. We localized endogenously expressed mSMPs in yeast using an aptamer-based RNA-tagging procedure and fluorescence microscopy. Unlike mRNAs encoding polarity and secretion factors that colocalize with cortical ER at the bud tip, mSMPs and mRNAs encoding soluble, nonsecreted, nonpolarized proteins localized mainly to ER peripheral to the nucleus (nER). Synthetic nontranslatable uracil-rich mRNAs were also demonstrated to colocalize with nER in yeast. This mRNA–ER association was verified by subcellular fractionation and reverse transcription-PCR, single-molecule fluorescence in situ hybridization, and was not inhibited upon SRP inactivation. To better understand mSMP targeting, we examined aptamer-tagged USE1, which encodes a tail-anchored membrane protein, and SUC2, which encodes a soluble secreted enzyme. USE1 and SUC2 mRNA targeting was not abolished by the inhibition of translation or removal of elements involved in translational control. Overall we show that mSMP targeting to the ER is both translation- and SRP-independent, and regulated by cis elements contained within the message and trans-acting RNA-binding proteins (e.g., She2, Puf2).


2012 ◽  
Vol 23 (24) ◽  
pp. 4668-4678 ◽  
Author(s):  
Ryan E. Tyler ◽  
Margaret M. P. Pearce ◽  
Thomas A. Shaler ◽  
James A. Olzmann ◽  
Ethan J. Greenblatt ◽  
...  

Degradation of folding- or assembly-defective proteins by the endoplasmic reticulum–associated degradation (ERAD) ubiquitin ligase, Hrd1, is facilitated by a process that involves recognition of demannosylated N-glycans by the lectin OS-9/XTP3-B via the adaptor protein SEL1L. Most of our knowledge of the machinery that commits proteins to this fate in metazoans comes from studies of overexpressed mutant proteins in heterologous cells. In this study, we used mass spectrometry to identify core-glycoslyated CD147 (CD147(CG)) as an endogenous substrate of the ERAD system that accumulates in a complex with OS-9 following SEL1L depletion. CD147 is an obligatory assembly factor for monocarboxylate transporters. The majority of newly synthesized endogenous CD147(CG) was degraded by the proteasome in a Hrd1-dependent manner. CD147(CG) turnover was blocked by kifunensine, and interaction of OS-9 and XTP3-B with CD147(CG) was inhibited by mutations to conserved residues in their lectin domains. These data establish unassembled CD147(CG) as an endogenous, constitutive ERAD substrate of the OS-9/SEL1L/Hrd1 pathway.


2007 ◽  
Vol 27 (9) ◽  
pp. 3441-3455 ◽  
Author(s):  
Stella Aronov ◽  
Rita Gelin-Licht ◽  
Gadi Zipor ◽  
Liora Haim ◽  
Einat Safran ◽  
...  

ABSTRACT Polarized growth in the budding yeast Saccharomyces cerevisiae depends upon the asymmetric localization and enrichment of polarity and secretion factors at the membrane prior to budding. We examined how these factors (i.e., Cdc42, Sec4, and Sro7) reach the bud site and found that their respective mRNAs localize to the tip of the incipient bud prior to nuclear division. Asymmetric mRNA localization depends upon factors that facilitate ASH1 mRNA localization (e.g., the 3′ untranslated region, She proteins 1 to 5, Puf6, actin cytoskeleton, and a physical association with She2). mRNA placement precedes protein enrichment and subsequent bud emergence, implying that mRNA localization contributes to polarization. Correspondingly, mRNAs encoding proteins which are not asymmetrically distributed (i.e., Snc1, Mso1, Tub1, Pex3, and Oxa1) are not polarized. Finally, mutations which affect cortical endoplasmic reticulum (ER) entry and anchoring in the bud (myo4Δ, sec3Δ, and srp101) also affect asymmetric mRNA localization. Bud-localized mRNAs, including ASH1, were found to cofractionate with ER microsomes in a She2- and Sec3-dependent manner; thus, asymmetric mRNA transport and cortical ER inheritance are connected processes in yeast.


Sign in / Sign up

Export Citation Format

Share Document