scholarly journals A developmental biologist’s “outside-the-cell” thinking

2015 ◽  
Vol 210 (3) ◽  
pp. 369-372 ◽  
Author(s):  
David R. Sherwood

A major gap in our understanding of cell biology is how cells generate and interact with their surrounding extracellular matrix. Studying this problem during development has been particularly fruitful. Recent work on the basement membrane in developmental systems is transforming our view of this matrix from one of a static support structure to that of a dynamic scaffold that is regularly remodeled to actively shape tissues and direct cell behaviors.

Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


1988 ◽  
Vol 254 (2) ◽  
pp. 609-612 ◽  
Author(s):  
W H Baricos ◽  
G Murphy ◽  
Y W Zhou ◽  
H H Nguyen ◽  
S V Shah

Neutral metalloproteinases degrade components of the extracellular matrix, including collagen types I-V, fibronectin, laminin and proteoglycan. However, their ability to degrade intact glomerular basement membrane (GBM) has not previously been investigated. Incubation of [3H]GBM (50,000 c.p.m.; pH 7.5; 24 h at 37 degrees C) with purified gelatinase or stromelysin (2 units) resulted in significant GBM degradation: gelatinase, 46 +/- 2.2; stromelysin, 59 +/- 5.8 (means +/- S.E.M.; percentage release of non-sedimentable radioactivity; n = 4). In contrast, 2 units of collagenase released only 5.6 +/- 0.52% (n = 3) of the [3H]GBM radioactivity compared with 2.0 +/- 0.15% (n = 7) released from [3H]GBM incubated alone. Sephadex G-200 gel chromatography of supernatants obtained from incubations of [3H]GBM with either gelatinase or stromelysin confirmed the ability of these enzymes to degrade GBM and revealed both high-(800,000) and relatively low-(less than 20,000) Mr degradation products for both enzymes. GBM degradation by gelatinase and stromelysin was dose-dependent (range 0.02-2.0 units), near maximal between pH 6.0 and 8.6, and was completely inhibited (greater than 95%) by 2 mM-o-phenanthroline. Collagenase (2 units) did not enhance the degradation of GBM by either gelatinase (0.02 or 0.2 unit) or stromelysin (0.02 or 0.2 unit). Our results indicate that metalloproteinase-mediated GBM degradation by neutrophils and glomeruli may be attributable to gelatinase (neutrophils) and/or stromelysin (glomeruli) and suggest an important role for these proteinases in glomerular pathophysiology.


Redox Biology ◽  
2019 ◽  
Vol 20 ◽  
pp. 496-513 ◽  
Author(s):  
Tina Nybo ◽  
Simon Dieterich ◽  
Luke F. Gamon ◽  
Christine Y. Chuang ◽  
Astrid Hammer ◽  
...  

2018 ◽  
Vol 6 (3) ◽  
pp. 20 ◽  
Author(s):  
Paige Drake ◽  
Tamara Franz-Odendaal

The formation of non-neurogenic placodes is critical prior to the development of several epithelial derivatives (e.g., feathers, teeth, etc.) and their development frequently involves morphogenetic proteins (or morphogens). Matrix metalloproteinases (MMPs) are important enzymes involved in extracellular matrix remodeling, and recent research has shown that the extracellular matrix (ECM) can modulate morphogen diffusion and cell behaviors. This review summarizes the known roles of MMPs during the development of non-neurogenic structures that involve a placodal stage. Specifically, we discuss feather, hair, tooth, mammary gland and lens development. This review highlights the potential critical role MMPs may play during placode formation in these systems.


Sign in / Sign up

Export Citation Format

Share Document