scholarly journals From cell biology to the microbiome: An intentional infinite loop

2015 ◽  
Vol 210 (1) ◽  
pp. 7-8 ◽  
Author(s):  
Wendy S. Garrett

Cell biology is the study of the structure and function of the unit or units of living organisms. Enabled by current and evolving technologies, cell biologists today are embracing new scientific challenges that span many disciplines. The eclectic nature of cell biology is core to its future and remains its enduring legacy.

2016 ◽  
Vol 27 (18) ◽  
pp. 2807-2810 ◽  
Author(s):  
Pierre A. Coulombe

In 1991, a set of transgenic mouse studies took the fields of cell biology and dermatology by storm in providing the first credible evidence that keratin intermediate filaments play a unique and essential role in the structural and mechanical support in keratinocytes of the epidermis. Moreover, these studies intimated that mutations altering the primary structure and function of keratin filaments underlie genetic diseases typified by cellular fragility. This Retrospective on how these studies came to be is offered as a means to highlight the 25th anniversary of these discoveries.


2013 ◽  
pp. 1-32 ◽  
Author(s):  
Leszek Konieczny ◽  
Irena Roterman-Konieczna ◽  
Paweł Spólnik

2006 ◽  
Vol 2 (3) ◽  
pp. 439-442 ◽  
Author(s):  
Gregory P Dietl ◽  
Jonathan R Hendricks

Biological asymmetries are important elements of the structure and function of many living organisms. Using the Plio–Pleistocene fossil record of crab predation on morphologically similar pairs of right- and left-handed snail species, we show here for the first time, contrary to traditional wisdom, that rare left-handed coiling promotes survival from attacks by right-handed crabs. This frequency-dependent result influences the balance of selection processes that maintain left-handedness at the species level and parallels some social interactions in human cultures, such as sports that involve dual contests between opponents of opposite handedness.


1984 ◽  
Vol 246 (2) ◽  
pp. R133-R151 ◽  
Author(s):  
J. S. Clegg

The nucleoplasm, the interiors of cytoplasmic membrane-bound organelles, and the aqueous cytoplasm make up the aqueous compartments of animal cells. The extent to which these compartments are concentrated solutions of macromolecules, metabolites, ions, and other solutes is a matter of some importance to current thinking about cell structure and function. This paper will focus on the aqueous cytoplasm. It will show that the composition and metabolic activities of the cytosol, obtained by methods of cell disruption and fractionation, bear almost no resemblance to those of the aqueous cytoplasm in intact cells. The consequences of this to contemporary views on cell structure and function are considered. A closely related topic concerns the physical properties of the dominant component of these compartments, water: Are these properties the same as those of water in aqueous solutions, or are they altered as a result of interaction with cell architecture? Available evidence strongly suggests that at least a large fraction of the total cell water exhibits properties that markedly differ from those of pure water. Selected examples of these studies will be reviewed, and the roles of cell water will be discussed, notably as they relate to metabolism and cell ultrastructure. Although dimly perceived at present, it appears that living cells exhibit an organization far greater than the current teachings of cell biology reveal.


1984 ◽  
Vol 99 (1) ◽  
pp. 167s-171s ◽  
Author(s):  
J S Clegg

The extent to which the properties of water in cells are like those of water in dilute aqueous solutions is a question of broad significance to cell biology. A detailed answer is not available at present, although evidence is accumulating that the properties of at least a large fraction of intracellular water are altered by interactions with cell ultrastructure, notably the cytomatrix. That and related evidence also suggests that the properties, composition, and activities of the "aqueous cytoplasm" of intact cells bear little resemblance to those of the "cytosol" obtained by cell fractionation. This paper will consider some of the evidence for these possibilities and some of their potential consequences with regard to cellular structure and function.


Author(s):  
Eve S. Wurtele ◽  
Diane C. Bassham ◽  
Julie Dickerson ◽  
David J. Kabala ◽  
William Schneller ◽  
...  

Knowledge of cellular structure and function has increased dramatically with the advent of modern molecular and computational technologies. Helping students to understand cellular dynamics is a major challenge to educators. To address this challenge, we have developed the Kabala Engine, an open source engine based on OpenSG (http://www.opensg.org) and VRJuggler (http://www.vrjuggler.org). This engine is designed to enable biologists, and indeed any domain expert — chemists, artists, psychologists — to create virtual interactive worlds for teaching or research. As a proof-of-concept, we have used this engine to create Meta!Blast, a virtual plant cell containing a prototype chloroplast in which students can enter, activate the light reactions, including electron excitation, and create molecular oxygen and ATP.


2021 ◽  
Vol 17 (2) ◽  
pp. 225-241
Author(s):  
Mai Lill Suhr Lunde ◽  
Tone Fredsvik Gregers

This study aimed to investigate Norwegian eighth-grade students’ preconceptions of cells, the development of their understanding of cellular structure and function during cell biology instruction, and their understanding of the cell as a system. We conducted pre- and posttests including drawings, images and statements with 28 students. Our findings indicate that most students had a simplified view of cells prior to instruction but developed significant knowledge about cellular structures and different types of cells during instruction. However, several misconceptions arose, and some students seemed to alter their correct preconceptions. This suggests that teachers need to address misconceptions during instruction and support integration of students’ previous and new knowledge. Additionally, we suggest that focusing on numerous structures and cells from different organisms confuses students and complicates the process of achieving a systemic view of the cell.


2014 ◽  
Vol 6 (245) ◽  
pp. 245sr2-245sr2 ◽  
Author(s):  
Sangeeta N. Bhatia ◽  
Gregory H. Underhill ◽  
Kenneth S. Zaret ◽  
Ira J. Fox

Despite the tremendous hurdles presented by the complexity of the liver’s structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.


Sign in / Sign up

Export Citation Format

Share Document