scholarly journals STRUCTURE-FUNCTION RELATIONSHIPS IN THE ADIPOSE CELL

1970 ◽  
Vol 46 (2) ◽  
pp. 326-341 ◽  
Author(s):  
Samuel W. Cushman

A method is described for preparing isolated rat adipose cells for electron microscopy. The ultrastructure of such cells and their production of 14CO2 from U-glucose-14C were studied simultaneously in the presence of insulin or epinephrine. Each adipose cell consists of a large lipid droplet surrounded by a thin rim of cytoplasm. In addition to typical subcellular organelles, a variety of small lipid droplets and an extensive system of membranes characterize the cell's cytoplasm. A fenestrated envelope surrounds the large, central lipid droplet. Similar envelopes surround cytoplasmic lipid droplets occurring individually or as aggregates of very small, amorphous droplets. Groups of individual droplets of smaller size also occur without envelopes. The system of membranes consists of invaginations of the cell membrane, vesicles possibly of pinocytic origin, simple and vesiculated vacuoles, vesicles deeper in the cytoplasm, flattened and vesicular smooth surfaced endoplasmic reticulum, and Golgi complexes. Neither insulin nor epinephrine produced detectable ultrastructural alterations even when cells were incubated under optimal conditions for the stimulation of 14CO2 evolution. Structural responses of the isolated adipose cell to hormones, if such occur, must, therefore, be dynamic rather than qualitative in nature; the extensive system of smooth surfaced membranes is suggestive of compartmentalized transport and metabolism.

RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 23960-23967
Author(s):  
Kilian Colas ◽  
Karl O. Holmberg ◽  
Linus Chiang ◽  
Susanne Doloczki ◽  
Fredrik J. Swartling ◽  
...  

We present an extensive photophysical study of a series of fluorescent indolylbenzothiadiazole derivatives and their ability to specifically image lipid droplets in astrocytes and glioblastoma cells.


Biochemistry ◽  
1977 ◽  
Vol 16 (6) ◽  
pp. 1151-1158 ◽  
Author(s):  
Visvanathan Chandramouli ◽  
Marianne Milligan ◽  
James R. Carter

2010 ◽  
Vol 22 (8) ◽  
pp. 1262 ◽  
Author(s):  
Xing Yang ◽  
Kylie R. Dunning ◽  
Linda L.-Y. Wu ◽  
Theresa E. Hickey ◽  
Robert J. Norman ◽  
...  

Lipid droplet proteins regulate the storage and utilisation of intracellular lipids. Evidence is emerging that oocyte lipid utilisation impacts embryo development, but lipid droplet proteins have not been studied in oocytes. The aim of the present study was to characterise the size and localisation of lipid droplets in mouse oocytes during the periovulatory period and to identify lipid droplet proteins as potential biomarkers of oocyte lipid content. Oocyte lipid droplets, visualised using a novel method of staining cumulus–oocyte complexes (COCs) with BODIPY 493/503, were small and diffuse in oocytes of preovulatory COCs, but larger and more centrally located after maturation in response to ovulatory human chorionic gonadotrophin (hCG) in vivo, or FSH + epidermal growth factor in vitro. Lipid droplet proteins Perilipin, Perilipin-2, cell death-inducing DNA fragmentation factor 45-like effector (CIDE)-A and CIDE-B were detected in the mouse ovary by immunohistochemistry, but only Perilipin-2 was associated with lipid droplets in the oocyte. In COCs, Perilipin-2 mRNA and protein increased in response to ovulatory hCG. IVM failed to induce Perilipin-2 mRNA, yet oocyte lipid content was increased in this context, indicating that Perilipin-2 is not necessarily reflective of relative oocyte lipid content. Thus, Perilipin-2 is a lipid droplet protein in oocytes and its induction in the COC concurrent with dynamic reorganisation of lipid droplets suggests marked changes in lipid utilisation during oocyte maturation.


2000 ◽  
Vol 113 (23) ◽  
pp. 4203-4210 ◽  
Author(s):  
D. Malide ◽  
G. Ramm ◽  
S.W. Cushman ◽  
J.W. Slot

We used an improved cryosectioning technique in combination with quantitative immunoelectron microscopy to study GLUT4 compartments in isolated rat white adipose cells. We provide clear evidence that in unstimulated cells most of the GLUT4 localizes intracellularly to tubulovesicular structures clustered near small stacks of Golgi and endosomes, or scattered throughout the cytoplasm. This localization is entirely consistent with that originally described in brown adipose tissue, strongly suggesting that the GLUT4 compartments in white and brown adipose cells are morphologically similar. Furthermore, insulin induces parallel increases (with similar magnitudes) in glucose transport activity, approximately 16-fold, and cell-surface GLUT4, approximately 12-fold. Concomitantly, insulin decreases GLUT4 equally from all intracellular locations, in agreement with the concept that the entire cellular GLUT4 pool contributes to insulin-stimulated exocytosis. In the insulin-stimulated state, GLUT4 molecules are not randomly distributed on the plasma membrane, but neither are they enriched in caveolae. Importantly, the total number of GLUT4 C-terminal epitopes detected by the immuno-gold method is not significantly different between basal and insulin-stimulated cells, thus arguing directly against a reported insulin-induced unmasking effect. These results provide strong morphological evidence (1) that GLUT4 compartments are similar in all insulin-sensitive cells and (2) for the concept that GLUT4 translocation almost fully accounts for the increase in glucose transport in response to insulin.


1984 ◽  
Vol 64 (4) ◽  
pp. 1055-1102 ◽  
Author(s):  
R. C. Strange

The hepatocyte is a polar cell that can remove a variety of molecules from blood and excrete them into bile. This review is primarily concerned with the mechanism of transport of the principal anions--the bile salts--across the sinusoidal membrane, their passage through the cell, and excretion across the canalicular membrane. Clearly much of this process is poorly understood, but the study of the membrane stages should be facilitated by the ability to prepare purified sinusoidal and canalicular membrane vesicles. For example, the relative importance of albumin-binding sites as well as the putative bile salt receptor proteins can be better assessed. It seems likely that although the interaction of bile salts with receptor proteins is important, it is an initial event that puts the bile salt in the correct place for uptake to occur. The driving force for uptake is the Na+ gradient created across the basolateral membrane by the activity of the Na+-K+-ATPase. Within the cell, various modes of transport have been suggested. Several authors emphasize the importance of protein binding of bile salts, either because of their presumed ability to maintain the concentration of these anions in the hepatocyte below their critical micellar concentration or because of their putative role in transport. It is important to understand these aspects of the role of cytosolic proteins for several reasons. Knowledge of the true concentration of free bile salt within the cell should allow estimation of whether the electrochemical gradient is sufficient for bile salts to accumulate in bile without the need for active transport of molecules from the cell into the canaliculus. The compartmental model described by Strange et al. (153) offers one theoretical way of determining the concentration of free bile salt, although the problems inherent in studying amphipath binding to the membranes of subcellular organelles (31) require that the model be reevaluated by the hygroscopic-desorption method. The second role suggested for the cytosolic bile salt-binding proteins is as transport proteins. As discussed in section VI, I think it is unlikely that the proteins identified so far act in this way, and it is more likely that movement occurs by diffusion in free solution. It is also important to determine the possible involvement of subcellular organelles such as Golgi bodies. Little is known of their role in the transport of bile salts or indeed where bile salt micelles are formed.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 85 (6) ◽  
pp. 2106-2111 ◽  
Author(s):  
Cynthia M. Ferrara ◽  
Thomas H. Reynolds ◽  
Mary Jane Zarnowski ◽  
Joseph T. Brozinick ◽  
Samuel W. Cushman

This investigation examined the effects of short-term exercise training on insulin-stimulated GLUT-4 glucose transporter translocation and glucose transport activity in rat adipose cells. Male Wistar rats were randomly assigned to a sedentary (Sed) or swim training group (Sw, 4 days; final 3 days: 2 × 3 h/day). Adipose cell size decreased significantly but minimally (∼20%), whereas total GLUT-4 increased by 30% in Sw vs. Sed rats. Basal 3- O-methyl-d-[14C]glucose transport was reduced by 62%, whereas maximally insulin-stimulated (MIS) glucose transport was increased by 36% in Sw vs. Sed rats. MIS cell surface GLUT-4 photolabeling was 44% higher in the Sw vs. Sed animals, similar to the increases observed in MIS glucose transport activity and total GLUT-4. These results suggest that increases in total GLUT-4 and GLUT-4 translocation to the cell surface contribute to the increase in MIS glucose transport with short-term exercise training. In addition, the results suggest that the exercise training-induced adaptations in glucose transport occur more rapidly than previously thought and with minimal changes in adipose cell size.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hai-bo Zhang ◽  
Wen Su ◽  
Hu Xu ◽  
Xiao-yan Zhang ◽  
You-fei Guan

Nonalcoholic fatty liver disease (NAFLD), especially in its inflammatory form (steatohepatitis, NASH), is closely related to the pathogenesis of chronic liver disease. Despite substantial advances in the management of NAFLD/NASH in recent years, there are currently no efficacious therapies for its treatment. The biogenesis and expansion of lipid droplets (LDs) are critical pathophysiological processes in the development of NAFLD/NASH. In the past decade, increasing evidence has demonstrated that lipid droplet-associated proteins may represent potential therapeutic targets for the treatment of NAFLD/NASH given the critical role they play in regulating the biogenesis and metabolism of lipid droplets. Recently, HSD17B13, a newly identified liver-enriched, hepatocyte-specific, lipid droplet-associated protein, has been reported to be strongly associated with the development and progression of NAFLD/NASH in both mice and humans. Notably, human genetic studies have repeatedly reported a robust association of HSD17B13 single nucleotide polymorphisms (SNPs) with the occurrence and severity of NAFLD/NASH and other chronic liver diseases (CLDs). Here we briefly overview the discovery, tissue distribution, and subcellular localization of HSD17B13 and highlight its important role in promoting the pathogenesis of NAFLD/NASH in both experimental animal models and patients. We also discuss the potential of HSD17B13 as a promising target for the development of novel therapeutic agents for NAFLD/NASH.


2011 ◽  
Vol 54 ◽  
pp. S311 ◽  
Author(s):  
S. Clement ◽  
C. Fauvelle ◽  
S. Pascarella ◽  
S. Conzelmann ◽  
V. Kaddai ◽  
...  

1989 ◽  
Vol 67 (9) ◽  
pp. 999-1006 ◽  
Author(s):  
Njanoor Narayanan ◽  
Philip Bedard ◽  
Trilochan S. Waraich

In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplassmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (<100 μg/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28–50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (>100 μg/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20–200 μg/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH. These findings imply that the inhibition of Ca2+ uptake observed at pH 6.8 is mainly due to decrease in the rate of active Ca2+ transport into the membrane vesicles rather than stimulation of passive Ca2+ efflux; at alkaline pH (pH 7.4), enhanced Ca2+ efflux contributes substantially, if not exclusively, to the decrease in Ca2+ uptake observed in the presence of the inhibitor. It is suggested that if the cytosolic inhibitor has actions similar to those observed in vitro in intact cardiac muscle, acid–base status of the intracellular fluid would be a major factor influencing the nature of its effects (inhibition of Ca2+ uptake or stimulation of Ca2+ release) on transmembrane Ca2+ fluxes across the sarcoplasmic reticulum.Key words: sarcoplasmic reticulum, Ca2+ uptake, Ca2+ release, endogenous inhibitor, heart muscle.


Sign in / Sign up

Export Citation Format

Share Document