scholarly journals L-glutamate stimulation of Na+ efflux from brain synaptic membrane vesicles.

1981 ◽  
Vol 256 (19) ◽  
pp. 10084-10087
Author(s):  
H.H. Chang ◽  
E.K. Michaelis
1989 ◽  
Vol 67 (9) ◽  
pp. 999-1006 ◽  
Author(s):  
Njanoor Narayanan ◽  
Philip Bedard ◽  
Trilochan S. Waraich

In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplassmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (<100 μg/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28–50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (>100 μg/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20–200 μg/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH. These findings imply that the inhibition of Ca2+ uptake observed at pH 6.8 is mainly due to decrease in the rate of active Ca2+ transport into the membrane vesicles rather than stimulation of passive Ca2+ efflux; at alkaline pH (pH 7.4), enhanced Ca2+ efflux contributes substantially, if not exclusively, to the decrease in Ca2+ uptake observed in the presence of the inhibitor. It is suggested that if the cytosolic inhibitor has actions similar to those observed in vitro in intact cardiac muscle, acid–base status of the intracellular fluid would be a major factor influencing the nature of its effects (inhibition of Ca2+ uptake or stimulation of Ca2+ release) on transmembrane Ca2+ fluxes across the sarcoplasmic reticulum.Key words: sarcoplasmic reticulum, Ca2+ uptake, Ca2+ release, endogenous inhibitor, heart muscle.


1996 ◽  
Vol 270 (1) ◽  
pp. F61-F68 ◽  
Author(s):  
F. Roch-Ramel ◽  
B. Guisan ◽  
L. Schild

[14C]urate and p-[14C]aminohippurate (PAH) uptake by human brush-border membrane vesicles (BBMV) were measured in the presence of an inwardly oriented sodium gradient. No direct sodium cotransport was observed. Indirect [14C]urate coupling to sodium transport was demonstrated by cis-stimulation of [14C]urate with nicotinate or pyrazinoate (PZA) in the extravesicular medium but not by adding lactate, alpha-ketoglutarate, or beta-hydroxybutyrate. Indirect sodium coupling of [14C]PAH uptake was observed only when alpha-ketoglutarate was added to the extravesicular medium, a mechanism similar to that of basolateral membranes. The ability for PZA (and nicotinate) to cis-stimulate urate uptake was correlated with a high apparent affinity for the urate/anion exchanger. In urate-loaded vesicles, for identical medium concentrations, [14C]PZA uptake via the urateanion exchanger was 10 times higher than [14C]lactate uptake. Such high PZA affinity for the urate exchanger, working in parallel with PZA sodium cotransport can account for the stimulation of urate reabsorption by PZA in vivo.


1984 ◽  
Vol 62 (1) ◽  
pp. 76-79 ◽  
Author(s):  
A. K. Grover ◽  
C. Y. Kwan

The rat vas deferens smooth muscle microsomes on isopycnic centrifugation gave two fractions, namely F2 (15–30% sucrose) and F3 (30–40% sucrose), with comparable ATP-dependent azide-insensitive Ca2+-uptake capacities, although these fractions differed from each other in various enzyme marker activities. The fractions F2 and F3 also show similar pH profiles for the ATP-independent and ATP-dependent Ca2+ uptake, and similar ionized Ca2+-concentration dependence for the ATP-dependent Ca2+ uptake. However, the fractions F2 and F3 differ from each other in that: (a) F3 shows higher permeability to Ca2+, and (b) F3 shows higher stimulation of the ATP-dependent Ca2+ uptake by oxalate. The F3 fraction can also be used to obtain membrane vesicles loaded with Ca2+ oxalate in the presence of ATP. However, the yield of the Ca2+ oxalate enriched fraction is too low to permit their further characterization.


1987 ◽  
Vol 253 (5) ◽  
pp. G637-G642 ◽  
Author(s):  
K. Lawless ◽  
D. Maenz ◽  
C. Cheeseman

The transport of the dibasic amino acid L-lysine was investigated using basolateral membrane vesicles prepared from rat jejunal mucosal scrapings. The majority of the carrier-mediated transport was unaffected by the presence of sodium in the incubation medium, but voltage clamping of the vesicles did increase lysine uptake, indicating an associated movement of charge. Kinetic analysis of lysine influx and efflux showed the system to be symmetrical, but although the Vmax was comparable to other amino acid transport systems in this membrane, the dissociation constant for the overall reaction (KT) was an order of magnitude larger. This low affinity for lysine would explain the relatively slow rate of transport of this amino acid across the basolateral membrane. Competition experiments indicated that this system has a relatively narrow specificity carrying only lysine, arginine, ornithine, and histidine. In contrast the presence of L-leucine caused a marked stimulation of lysine efflux and influx across the vesicles. This effect was observed with leucine concentrations as low as 0.1 microM. It is concluded that although the lysine transport system in the basolateral membrane is slow in its basal state it can be rapidly turned on by the presence of L-leucine. The remarkably low concentrations required to do this suggest a possible allosteric interaction between the transporter and this neutral amino acid.


1970 ◽  
Vol 45 (2) ◽  
pp. 291-305 ◽  
Author(s):  
T. L. Chan ◽  
John W. Greenawalt ◽  
Peter L. Pedersen

Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol.


1988 ◽  
Vol 252 (1) ◽  
pp. 215-220 ◽  
Author(s):  
A Enyedi ◽  
J Minami ◽  
A J Caride ◽  
J T Penniston

A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.


1998 ◽  
Vol 332 (3) ◽  
pp. 799-805 ◽  
Author(s):  
Sanjay K. SRIVASTAVA ◽  
Xun HU ◽  
Hong XIA ◽  
Richard J. BLEICHER ◽  
Howard A. ZAREN ◽  
...  

Glutathione (GSH) S-transferases (GSTs) have an important role in the detoxification of (+)-anti-7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(+)-anti-BPDE], which is the ultimate carcinogen of benzo[a]pyrene. However, the fate and/or biological activity of the GSH conjugate of (+)-anti-BPDE [(-)-anti-BPD-SG] is not known. We now report that (-)-anti-BPD-SG is a competitive inhibitor (Ki 19 µM) of Pi-class isoenzyme mGSTP1-1, which among murine hepatic GSTs is most efficient in the GSH conjugation of (+)-anti-BPDE. Thus the inhibition of mGSTP1-1 activity by (-)-anti-BPD-SG might interfere with the GST-catalysed GSH conjugation of (+)-anti-BPDE unless one or more mechanisms exist for the removal of the conjugate. The results of the present study indicate that (-)-anti-BPD-SG is transported across canalicular liver plasma membrane (cLPM) in an ATP-dependent manner. The ATP-dependent transport of (-)-anti-[3H]BPD-SG followed Michaelis–Menten kinetics (Km 46 µM). The ATP dependence of the (-)-anti-BPD-SG transport was confirmed by measuring the stimulation of ATP hydrolysis (ATPase activity) by the conjugate in the presence of cLPM protein, which also followed Michaelis–Menten kinetics. In contrast, a kinetic analysis of ATP-dependent uptake of the model conjugate S-[3H](2,4-dinitrophenyl)-glutathione ([3H]DNP-SG) revealed the presence of a high-affinity and a low-affinity transport system in mouse cLPM, with apparent Km values of 18 and 500 µM respectively. The ATP-dependent transport of (-)-anti-BPD-SG was inhibited competitively by DNP-SG (Ki 1.65 µM). Likewise, (-)-anti-BPD-SG was found to be a potent competitive inhibitor of the high-affinity component of DNP-SG transport (Ki 6.3 µM). Our results suggest that GST-catalysed conjugation of (+)-anti-BPDE with GSH, coupled with ATP-dependent transport of the resultant conjugate across cLPM, might be the ultimate detoxification pathway for this carcinogen.


1989 ◽  
Vol 256 (1) ◽  
pp. G124-G128 ◽  
Author(s):  
J. R. Walters

Calbindin-D9k, a vitamin D-dependent Ca2+-binding protein, is closely associated with the transcellular absorption of calcium by mammalian enterocytes. Studies were performed to determine whether physiological concentrations of calbindin-D9k altered Ca2+ transport by the ATP-dependent Ca2+ pump in rat duodenal basolateral membrane vesicles. In solutions where free Ca2+ was buffered by EGTA, only a small stimulation of Ca2+ uptake rates could be demonstrated, and it was likely that this was secondary to changes in free Ca2+ concentration. However, a threefold stimulation of uptake by 30 microM calbindin-D9k was found when EGTA-free solutions were used, and changes in free Ca2+ activity or 45Ca2+ specific activity were avoided. The affinity for Ca2+ was reduced in this system but appeared to be stimulated by either calbindin-D9k or EGTA. Other Ca2+-binding proteins that bind Ca2+ in the micromolar range were found to increase Ca2+ uptake in the absence of EGTA. These experiments suggest that one of the actions of calbindin-D9k is to stimulate the rate of extrusion of Ca2+ from the enterocyte by increasing Ca2+ transport by the Ca2+ pump.


Sign in / Sign up

Export Citation Format

Share Document