scholarly journals GOLGI APPARATUS, GERL, AND LYSOSOMES OF NEURONS IN RAT DORSAL ROOT GANGLIA, STUDIED BY THICK SECTION AND THIN SECTION CYTOCHEMISTRY

1971 ◽  
Vol 50 (3) ◽  
pp. 859-886 ◽  
Author(s):  
Phyllis M. Novikoff ◽  
Alex B. Novikoff ◽  
Nelson Quintana ◽  
Jean-Jacques Hauw

New insights into the ultrastructure and phosphatase localizations of Golgi apparatus and GERL, and into the probable origin of lysosomes in the neurons of fetal dorsal root ganglia and the small neurons of adult ganglia have come from studying thick (0.5–1.0 µ) as well as thin (up to 500 A) sections by conventional electron microscopy. Tilting the thick specimens, by a goniometer stage, has helped to increase our understanding of the three-dimensional aspects of the Golgi apparatus and GERL. One Golgi element, situated at the inner aspect of the Golgi stack, displays thiamine pyrophosphatase and nucleoside diphosphatase activities. This element exhibits regular geometric arrays (hexagons) of interconnected tubules without evidence of a flattened portion (saccule or cisterna). In contrast, GERL shows acid phosphatase activity and possesses small cisternal portions and anastomosing tubules. Lysosomes appear to bud from GERL. Osmium deposits, following prolonged osmication, are found in the outer Golgi element. Serial 0.5-µ and thin sections of thiamine pyrophosphatase-incubated material demonstrate that, in the neurons studied, the Golgi apparatus is a continuous network coursing through the cytoplasm. Serial thick sections of acid phosphatase-incubated tissue suggest that GERL is also a continuous structure throughout the cytoplasm. Tubules of smooth endoplasmic reticulum, possibly part of GERL, extend into the polygonal compartments of the inner Golgi element. The possible physiological significance of a polygonal arrangement of a phosphatase-rich Golgi element in proximity to smooth ER is considered. A tentative diagram of the Golgi stack and associated endoplasmic reticulum in these neurons has been drawn.

1955 ◽  
Vol 1 (1) ◽  
pp. 69-88 ◽  
Author(s):  
Sanford L. Palay ◽  
George E. Palade

1. Thin sections of representative neurons from intramural, sympathetic and dorsal root ganglia, medulla oblongata, and cerebellar cortex were studied with the aid of the electron microscope. 2. The Nissl substance of these neurons consists of masses of endoplasmic reticulum showing various degrees of orientation; upon and between the cisternae, tubules, and vesicles of the reticulum lie clusters of punctate granules, 10 to 30 mµ in diameter. 3. A second system of membranes can be distinguished from the endoplasmic reticulum of the Nissl bodies by shallower and more tightly packed cisternae and by absence of granules. Intermediate forms between the two membranous systems have been found. 4. The cytoplasm between Nissl bodies contains numerous mitochondria, rounded lipid inclusions, and fine filaments.


1968 ◽  
Vol 16 (5) ◽  
pp. 320-336 ◽  
Author(s):  
ERIC HOLTZMAN ◽  
REGINA DOMINITZ

The adrenalin-producing cells of the rat adrenal medulla have been studied by light and electron microscopy. Frozen sections of glutaraldehyde-perfused material were incubated for demonstration of "marker" enzymes for lysosomes (acid phosphatase, aryl sulfatase) and Golgi apparatus (thiamine pyrophosphatase). In addition, the uptake and fate of intravenously administered horseradish peroxidase was followed. Acid phosphatase activity is demonstrable in secretory granules, Golgi saccules, vesicles in the Golgi area and in the agranular tubules and cisternae (GERL) from which secretory granules appear to form at the inner surface of the Golgi apparatus. Endoplasmic reticulum with ribosomes on only one surface is closely apposed to both inner and outer aspects of the Golgi apparatus. Peroxidase is taken up in vesicles, tubules and "cup-like" bodies. The latter apparently transform into multivesicular bodies. A possible source of the acid phosphatase found in multivesicular bodies is the small vesicles from the Golgi apparatus or GERL.


Author(s):  
M. F. Lalli ◽  
V. Lacroix ◽  
L. Hermo ◽  
Y. Clermont ◽  
C. E. Smith

The testosterone-secreting Leydig cells contain an abundance of smooth endoplasmic reticulum, peroxisomes, mitochondria as well as a large, spheroidal, juxtanuclear Golgi apparatus composed of interconnected stacks of saccules (Figs. 1,2). Each Golgi stack appears to be composed of between 5 to 7 saccules or sacculo-tubular elements (Figs.1,2). These cells also possess pale and dense multivesicular bodies and dense membrane-bound bodies identified assecondary lysosomes, all of which have been shown to be involved in fluid phase and adsorptive endocytosis as well as in receptor mediated endocytosis. The purpose of the present study was to characterize the reactivity of Golgi saccules, multivesicular bodies and lysosomes of Leydig cells for different phosphatases.


1968 ◽  
Vol 16 (5) ◽  
pp. 299-319 ◽  
Author(s):  
ALEX B. NOVIKOFF ◽  
ARLINE ALBALA ◽  
LUIS BIEMPICA

The B-16 and Harding-Passey mouse melanomas were studied by light microscopy (tyrosinase, acid phosphatase, aryl sulfatase, thiamine pyrophosphatase and inosine diphosphatase activities) and electron microscopy (morphology and tyrosinase and acid phosphatase activities). Lysosomal enzyme activity is present in individual premelanosomes and melanosomes as well as in compound melanosomes. Acid phosphatase and tyrosinase activities are present in a Golgi-associated system of smooth endoplasmic reticulum (GERL) and small vesicles related to it. The acid phosphatase and tyrosinase activities of premelanosomes, and morphologic appearances, support the hypothesis that the granules arise from GERL. On the basis of the evidence presented, it is suggested that compound melanosomes arise within melanoma cells by autophagy.


Author(s):  
V.J. Montpetit ◽  
S. Dancea ◽  
L. Tryphonas ◽  
D.F. Clapin

Very large doses of pyridoxine (vitamin B6) are neurotoxic in humans, selectively affecting the peripheral sensory nerves. We have undertaken a study of the morphological and biochemical aspects of pyridoxine neurotoxicity in an animal model system. Early morphological changes in dorsal root ganglia (DRG) associated with pyridoxine megadoses include proliferation of neurofilaments, ribosomes, rough endoplasmic reticulum, and Golgi complexes. We present in this report evidence of the formation of unique aggregates of microtubules and membranes in the proximal processes of DRG which are induced by high levels of pyridoxine.


1977 ◽  
Vol 25 (5) ◽  
pp. 319-328 ◽  
Author(s):  
E Dannen ◽  
M E Beard

Organelles with the morphologic characteristics of peroxisomes have been found in the cells of the kidney sac of two terrestrial pulmonate gastropods. Arion ater and Ariolimax columbianus. These peroxisomes appear in profile as circles or ellipses, 0.25 micron in diameter and 0.3-0.8 micron long; They have a finely granular matrix and a single-limiting membrane; the organelles are extensively associated with smooth endoplasmic reticulum. Some Ariolimax peroxisomes contained structures reminiscent of nucleoids while those of Arion did not. The peroxisomes of Arion ater show a strongly-positive staining reaction with the 3,3'-diaminobenzidine technique, which is inhibited in the presence of aminotriazole. Peroxisomes of Ariolimax columbianus did not show a positive reaction, despite a number of variations of the 3,3'-diaminobenzidine protocol. Speculations are made concerning the biochemical reasons for this cytochemical behavior. Peroxisomes in both tissues were negatively stained while lysosomes were positively stained in acid-phosphatase incubations.


1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.


Parasitology ◽  
1975 ◽  
Vol 70 (3) ◽  
pp. 331-340 ◽  
Author(s):  
D. W. Halton

The ultrastructural and cytochemical changes accompanying intracellular digestion and cellular defecation in the haematin cell of Diclidophora merlangi have been described. Blood proteins of the host-fish are sequestered by endocytosis and degraded within an interconnecting network of channels that form an integral, but changing, part of the cell. The digestive enzymes involved originate in the granular endoplasmic reticulum and are packaged in the Golgi apparatus and transferred to the channels in Golgi vesicles. The rate of haemoglobin absorption and the activity of the Golgi, as judged by vesicle counts and staining intensities for thiamine pyrophosphatase activity, are stimulated by the introduction of host protein into the gut lumen. The haematin residues of digestion are extruded periodically into the lumen by exocytosis involving membrane fusion. The process is a continuous one and, in worms starved of food, can result in the complete evacuation of pigment from the cell. It is suggested that a lysosomal system operates in the digestive cycle of the haematin cell.


1970 ◽  
Vol 44 (3) ◽  
pp. 492-500 ◽  
Author(s):  
R. D. Cheetham ◽  
D. James Morré ◽  
Wayne N. Yunghans

Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.


Cell Reports ◽  
2018 ◽  
Vol 25 (2) ◽  
pp. 271-277.e4 ◽  
Author(s):  
Chaitanya K. Gavini ◽  
Angie L. Bookout ◽  
Raiza Bonomo ◽  
Laurent Gautron ◽  
Syann Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document