scholarly journals Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence.

1977 ◽  
Vol 72 (3) ◽  
pp. 744-755 ◽  
Author(s):  
Y Kitajima ◽  
G A Thompson

When cells of Tetrahymena pyriformis, strain NT-1, were chilled from their growth temperature of 39.5 degrees C to lower temperatures, the plasma membrane, outer alveolar, nuclear, outer mitochondrial, food vacuolar, and endoplasmic reticulum membranes each responded in a fashion quite characteristic of the membrane type. In most cases a distinctive rearrangement of intramembrane particles, as discerned by freeze-fracture electron microscopy, began abruptly at a definitive temperature. By comparing the freeze-fracture patterns of membranes in cells grown at 39.5, 27, and 15 degrees C, it was shown that the initial particle rearrangement in a given membrane always occurred at a fixed number of degrees below the growth temperature of the cell. Gradual chilling of a cell grown at constant temperature induced these membrane changes first in the outer alveolar membrane, then, in order of decreasing response to temperature, in the endoplasmic reticulum, outer mitochondrial membrane, nuclear envelope, and vacuolar membrane. The normally stable relationships between the physical properties of the several membrane types could in some cases be reversed, but only temporarily, by fatty acid supplementation or during the initial phases of acclimation to growth at a different temperature. The system provides a unique opportunity to study the effects of environmental change upon the physical properties of several functionally distinct but metabolically interrelated membranes within a single cell.

1996 ◽  
Vol 109 (6) ◽  
pp. 1415-1425 ◽  
Author(s):  
C. Lavoie ◽  
J. Lanoix ◽  
F.W. Kan ◽  
J. Paiement

Smooth endoplasmic reticulum assembly was studied in a cell-free system using thin-section and freeze-fracture electron microscopy. Incubation of rat hepatocyte rough and smooth microsomes in the presence of ATP, GTP, cytosol (Xenopus egg) and an ATP-regenerating system led to assembly of membrane networks comprising a central core of interconnecting smooth tubules continuous with peripherally located rough membrane cisternae. Glucose-6-phosphatase cytochemistry confirmed the endoplasmic reticulum origin of the reconstituted membranes. When both ATP and GTP were omitted from the incubation medium, or when GTP was replaced by a variety of nucleotide analogues, including GTP gamma S, membrane aggregates contained only unfused microsomes. The presence of GTP alone stimulated assembly of rough membrane cisternae but had no effect on smooth membranes. Smooth tubule formation occurred independent of cytosol and an ATP-regenerating system, but did require GTP and ATP. Omission of ATP, or replacement of this nucleotide with a variety of analogues, including ATP gamma S, prevented tubule formation but did not affect the assembly of the rough membrane cisternae. Morphometric studies revealed sequential formation of rough membrane cisternae (0-60 minutes) followed by appearance of interconnecting smooth tubules (> 60 minutes). The amount of rough membrane cisternae per membrane network diminished with time after 60 minutes; that of smooth tubules increased. Thus GTP is required for reconstitution of rough membrane cisternae, both GTP and ATP are required for smooth tubule formation, and assembly of smooth tubules occurs as an outgrowth (i.e. via tubulation) from rough membranes.


1981 ◽  
Vol 51 (1) ◽  
pp. 63-84
Author(s):  
C. Favard-Sereno ◽  
M.A. Ludosky ◽  
A. Ryter

The plasma membrane and its derivative, the phagosome membrane, were studied during and after ingestion of yeast of latex beads in Dictyostelium discoideum. Freeze-fracture electron microscopy, which provides information on the internal architecture of the membranes, and observation of thin sections of cells treated by cytochemical methods were used in parallel. For visualization of membrane sterols in the replicas, the cells were fixed in the presence of digitonin or the antibiotic filipin. No lateral phase separation occurred during yeast engulfment: the intramembranous particles (IMPs), phospholipids and sterols remained distributed at random in the forming phagosome membrane. In contrast architectural modifications of the membrane were observed upon phagosome internalization. Compared to the plasma membrane, the phagosome membrane displayed 2–3 times more IMPs a shift in the IMP size distribution and a higher sterol content. These changes were completed soon after phagosome closure; they were not related either to the nature of the ingested particles (yeast, latex beads) or to the pH in the membrane environment. The membrane changes too place when the phagosomes began to fuse with pre-existing digestive or autophagic vacuoles and lysosomes. Some of the experimental evidence suggests that the restructuring of the membrane may be related to the presence of hydrolases.


Author(s):  
D.J. Benefiel ◽  
R.S. Weinstein

Intramembrane particles (IMP or MAP) are components of most biomembranes. They are visualized by freeze-fracture electron microscopy, and they probably represent replicas of integral membrane proteins. The presence of MAP in biomembranes has been extensively investigated but their detailed ultrastructure has been largely ignored. In this study, we have attempted to lay groundwork for a systematic evaluation of MAP ultrastructure. Using mathematical modeling methods, we have simulated the electron optical appearances of idealized globular proteins as they might be expected to appear in replicas under defined conditions. By comparing these images with the apearances of MAPs in replicas, we have attempted to evaluate dimensional and shape distortions that may be introduced by the freeze-fracture technique and further to deduce the actual shapes of integral membrane proteins from their freezefracture images.


2010 ◽  
Vol 16 (S2) ◽  
pp. 1172-1173
Author(s):  
B Papahadjopoulos-Sternberg ◽  
J Ackrell

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


1978 ◽  
Vol 33 (1) ◽  
pp. 301-316
Author(s):  
J.G. Swift ◽  
T.M. Mukherjee

Changes in the structural organization of membranes of mucous bodies and the plasma membrane that occur during mucus production in goblet cells of rat rectum have been studied by thin-section and freeze-fracture techniques. Immature mucous bodies are bounded by a trilaminar membrane and fracture faces of the membrane have randomly distributed intramembrane particles. During maturation, mucous bodies become packed tightly together and changes in the structure of their membranes include (1) fusion of apposing membranes of adjacent bodies to form a pentalaminar structure, (2) a reduction in the density of particles on membrane fracture faces, and (3) exclusion of particles from regions of membrane apposition. Some trilaminar membranes of mucous bodies fuse with the lumenal plasma membrane to form a pentalaminar structure. Sites of apposition between mucous body membranes and the lumenal plasma membrane are seen as particle-cleared bulges on fracture faces of the plasma membrane. Our results indicate that membrane reorganization associated with mucous production in goblet cells includes a reduction and redistribution of some membrane proteins and that membrane fusion occurs between portions of membranes from which proteins have been displaced.


Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 223-232
Author(s):  
John F. Fallon ◽  
Robert O. Kelley

The fine structure of the apical ectodermal ridge of five phylogenetically divergent orders of mammals and two orders of birds was examined using transmission and freeze fracture electron microscopy. Numerous large gap junctions were found in all apical ectodermal ridges studied. This was in contrast to the dorsal and ventral limb ectoderms where gap junctions were always very small and sparsely distributed. Thus, gap junctions distinguish the inductively active apical epithelium from the adjacent dorsal and ventral ectoderms. The distribution of gap junctions in the ridge was different between birds and mammals but characteristic within the two classes. Birds, with a pseudostratified columnar apical ridge, had the heaviest concentration of gap junctions at the base of each ridge cell close to the point where contact was made with the basal lamina. Whereas mammals, with a stratified cuboidal to squamous apical ridge, had a more uniform distribution of gap junctions throughout the apical epithelium. The difference in distribution for each class may reflect structural requirements for coupling of cells in the entire ridge. We propose that all cells of the apical ridges of birds and mammals are electrotonically and/or metabolically coupled and that this may be a requirement for the integrated function of the ridge during limb morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document