scholarly journals Cell division from a genetic perspective

1978 ◽  
Vol 77 (3) ◽  
pp. 627-637 ◽  
Author(s):  
LH Hartwell

A novel view of the eukaryotic cell cycle is taking form as genetic strategies borrowed from investigations of microbial gene regulation and bacteriophage morphogenesis are being applied to the process of cell division. It is a genetic construct in which mutational lesions identify the primary events, thermolabile gene products reveal temporal order, mutant phenotypes yield pathways of causality, and regulatory events are localized within sequences of gene controlled steps.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2440-2440
Author(s):  
Chris C.S. Hsiung ◽  
Arjun Raj ◽  
Gerd A. Blobel

Abstract Normal hematopoiesis involves the coordination of cell division and gene expression to produce physiologically appropriate cell numbers of various developmental stages across lineages. While studies have demonstrated intricate links between cell cycle progression and developmental gene regulation -- two cellular programs whose concomitant dysregulation is central to many malignant and non-malignant hematologic diseases -- researchers currently lack clear, general principles of how intrinsic properties of cell division could influence developmental gene regulation. In each round of division, mitosis imposes a striking disruption to gene expression: the nucleus is disassembled, bulk RNA synthesis ceases, and the transcription machinery and most transcription factors -- including repressive complexes -- are evicted from mitotic chromatin. Since hematopoietic lineage fidelity often requires the continued presence of repressive complexes to inhibit expression of developmentally inappropriate genes, we hypothesized that such repression may be inefficient during a narrow window immediately post-mitosis, resulting in transient aberrant transcription in a probabilistic manner. We tested for the presence of transient post-mitotic aberrant transcription at genes whose repression is known to depend on continued occupancy of repressive complexes. We used an experimentally tractable cell line, G1E cells, a rapidly dividing model of lineage-committed murine pro-erythroblasts that genetically lack the erythroid master regulator Gata1. Transduction with a Gata1-estrogen receptor fusion construct and treatment with estradiol restores Gata1 function, leading to recapitulation of early erythroid maturation events, including rapid repression of stemness-associated genes, such as Gata2 and c-Kit. We examined in fine temporal detail the post-mitotic transcriptional behavior of Gata2, c-Kit and other genes using population-based assays facilitated by drug-mediated cell cycle synchronization. In addition, we bypassed the use of synchronization drugs and their associated potential experimental artifacts by developing novel complementary methods to study the relationship between cell cycle status and transcription in asynchronous populations: 1. We harnessed single-molecule RNA fluorescence in situ hybridization technology to quantitatively assess transcription in individual cells at various cell cycle stages, and 2. We adapted a fluorescent protein cell cycle reporter to separate, using fluorescence-activated cell sorting, subpopulations of specific cell cycle stages for epigenomic and transcriptomic analyses. Together, our results revealed a post-mitotic pulse of increased RNA polymerase II recruitment and transcript synthesis most clearly exhibited by Gata2, c-Kit, and other genes whose repression is known to depend on co-repressor complexes in these cells. Our results support the notion that the mitosis-G1 transition presents a window of transcriptional plasticity. We are beginning to explore how this property of post-mitotic transcriptional control applies to hematopoietic cell types across the developmental spectrum and could contribute to functionally important variations in gene expression, such as in stem cell lineage commitment, experimental reprogramming, and non-genetic heterogeneity in malignancy. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 31 (26) ◽  
pp. 2871-2873
Author(s):  
Paul Nurse

Cell cycle mutants in the budding and fission yeasts have played critical roles in working out how the eukaryotic cell cycle operates and is controlled. The starting point was Lee Hartwell’s 1970s landmark papers describing the first cell division cycle (CDC) mutants in budding yeast. These mutants were blocked at different cell cycle stages and so were unable to complete the cell cycle, thus defining genes necessary for successful cell division. Inspired by Hartwell’s work, I isolated CDC mutants in the very distantly related fission yeast. This started a program of searches for mutants in fission yeast that revealed a range of phenotypes informative about eukaryotic cell cycle control. These included mutants defining genes that were rate-limiting for the onset of mitosis and of the S-phase, that were responsible for there being only one S-phase in each cell cycle, and that ensured that mitosis only took place when S-phase was properly completed. This is a brief account of the discovery of these mutants and how they led to the identification of cyclin-dependent kinases as core to these cell cycle controls.


2010 ◽  
Vol 30 (4) ◽  
pp. 243-255 ◽  
Author(s):  
Randy Suryadinata ◽  
Martin Sadowski ◽  
Boris Sarcevic

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Jonathan A. Robbins ◽  
Sabrina Absalon ◽  
Vincent A. Streva ◽  
Jeffrey D. Dvorin

ABSTRACT All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G1-, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle.


2021 ◽  
Vol 22 (15) ◽  
pp. 7985
Author(s):  
Scott C. Schuyler ◽  
Hsin-Yu Chen

Research on the budding yeast Saccharomyces cerevisiae has yielded fundamental discoveries on highly conserved biological pathways and yeast remains the best-studied eukaryotic cell in the world. Studies on the mitotic cell cycle and the discovery of cell cycle checkpoints in budding yeast has led to a detailed, although incomplete, understanding of eukaryotic cell cycle progression. In multicellular eukaryotic organisms, uncontrolled aberrant cell division is the defining feature of cancer. Some of the most successful classes of anti-cancer chemotherapeutic agents are mitotic poisons. Mitotic poisons are thought to function by inducing a mitotic spindle checkpoint-dependent cell cycle arrest, via the assembly of the highly conserved mitotic checkpoint complex (MCC), leading to apoptosis. Even in the presence of mitotic poisons, some cancer cells continue cell division via ‘mitotic slippage’, which may correlate with a cancer becoming refractory to mitotic poison chemotherapeutic treatments. In this review, knowledge about budding yeast cell cycle control is explored to suggest novel potential drug targets, namely, specific regions in the highly conserved anaphase-promoting complex/cyclosome (APC/C) subunits Apc1 and/or Apc5, and in a specific N-terminal region in the APC/C co-factor cell division cycle 20 (Cdc20), which may yield molecules which block ‘mitotic slippage’ only in the presence of mitotic poisons.


Genetics ◽  
1973 ◽  
Vol 74 (2) ◽  
pp. 267-286
Author(s):  
Leland H Hartwell ◽  
Robert K Mortimer ◽  
Joseph Culotti ◽  
Marilyn Culotti

ABSTRACT One hundred and forty-eight temperature-sensitive cell division cycle (cdc) mutants of Saccharomyces cerevisiae have been isolated and characterized. Complementation studies ordered these recessive mutations into 32 groups and tetrad analysis revealed that each of these groups defines a single nuclear gene. Fourteen of these genes have been located on the yeast genetic map. Functionally related cistrons are not tightly clustered. Mutations in different cistrons frequently produce different cellular and nuclear morphologies in the mutant cells following incubation at the restrictive temperature, but all the mutations in the same cistron produce essentially the same morphology. The products of these genes appear, therefore, each to function individually in a discrete step of the cell cycle and they define collectively a large number of different steps. The mutants were examined by time-lapse photomicroscopy to determine the number of cell cycles completed at the restrictive temperature before arrest. For most mutants, cells early in the cell cycle at the time of the temperature shift (before the execution point) arrest in the first cell cycle while those later in the cycle (after the execution point) arrest in the second cell cycle. Execution points for allelic mutations that exhibit first or second cycle arrest are rather similar and appear to be cistron-specific. Other mutants traverse several cycles before arrest, and its suggested that the latter type of response may reveal gene products that are temperature-sensitive for synthesis, whereas the former may be temperature-sensitive for function. The gene products that are defined by the cdc cistrons are essential for the completion of the cell cycle in haploids of a and α mating type and in a/α diploid cells. The same genes, therefore, control the cell cycle in each of these stages of the life cycle.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Matteo Barberis

AbstractIn budding yeast, synchronization of waves of mitotic cyclins that activate the Cdk1 kinase occur through Forkhead transcription factors. These molecules act as controllers of their sequential order and may account for the separation in time of incompatible processes. Here, a Forkhead-mediated design principle underlying the quantitative model of Cdk control is proposed for budding yeast. This design rationalizes timing of cell division, through progressive and coordinated cyclin/Cdk-mediated phosphorylation of Forkhead, and autonomous cyclin/Cdk oscillations. A “clock unit” incorporating this design that regulates timing of cell division is proposed for both yeast and mammals, and has a DRIVER operating the incompatible processes that is instructed by multiple CLOCKS. TIMERS determine whether the clocks are active, whereas CONTROLLERS determine how quickly the clocks shall function depending on external MODULATORS. This “clock unit” may coordinate temporal waves of cyclin/Cdk concentration/activity in the eukaryotic cell cycle making the driver operate the incompatible processes, at separate times.


2003 ◽  
Vol 31 (6) ◽  
pp. 1526-1529 ◽  
Author(s):  
B. Novák ◽  
J.J. Tyson

The eukaryotic cell-division cycle is regulated by three modules that control G1/S, G2/M and meta/anaphase transitions. By using mathematical modelling, we show the dynamic characteristics of these individual modules and we also assemble them together into a comprehensive model of the eukaryotic cell-division cycle. With this comprehensive model, we also discuss the mechanisms by which different checkpoint pathways stabilize different cell-cycle states and inhibit the transitions that drive cell-cycle progression.


2020 ◽  
Vol 31 (26) ◽  
pp. 2874-2878
Author(s):  
Marc Kirschner

The cell cycle, a 19th century discovery of cytologists, only achieved a satisfactory biochemical explanation in the last 20 years of the 20th century. This personal retrospective focuses on how biochemical studies of the frog egg helped identify the cyclin-based mitotic oscillator and how this approach quickly merged with genetic studies in yeast to establish the basic mechanism of the eukaryotic cell division cycle. The key feature that made this a cyclic process was regulated protein degradation, mediated by ubiquitin, catalyzed by a massive enzyme machine, called the Anaphase Promoting Complex.


Author(s):  
Heidi M. Blank ◽  
Ophelia Papoulas ◽  
Nairita Maitra ◽  
Riddhiman Garge ◽  
Brian K. Kennedy ◽  
...  

ABSTRACTEstablishing the pattern of abundance of molecules of interest during cell division has been a long-standing goal of cell cycle studies. In several systems, including the budding yeast Saccharomyces cerevisiae, cell cycle-dependent changes in the transcriptome are well studied. In contrast, few studies queried the proteome during cell division, and they are often plagued by low agreement with each other and with previous transcriptomic datasets. There is also little information about dynamic changes in the levels of metabolites and lipids in the cell cycle. Here, for the first time in any system, we present experiment-matched datasets of the levels of RNAs, proteins, metabolites, and lipids from un-arrested, growing, and synchronously dividing yeast cells. Overall, transcript and protein levels were correlated, but specific processes that appeared to change at the RNA level (e.g., ribosome biogenesis), did not do so at the protein level, and vice versa. We also found no significant changes in codon usage or the ribosome content during the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control of lipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document