scholarly journals Binding and degradation of platelet thrombospondin by cultured fibroblasts.

1984 ◽  
Vol 98 (1) ◽  
pp. 22-28 ◽  
Author(s):  
P J McKeown-Longo ◽  
R Hanning ◽  
D F Mosher

Thrombospondin was purified from human platelets and labeled with 125I, and its metabolism was quantified in cell cultures of human embryonic lung fibroblasts. 125I-Thrombospondin bound to the cell layer. The binding reached an apparent steady state within 45 min. Trichloroacetic acid-soluble radioactivity was detected in the medium after 30 min of incubation; the rate of degradation of 125I-thrombospondin was linear for several hours thereafter. Degradation of 125I-thrombospondin was saturable. The apparent Km and Vmax for degradation at 37 degrees C were 6 X 10(-8) M and 1.4 X 10(5) molecules per cell per minute, respectively. Degradation was inhibited by chloroquine or by lowering the temperature to 4 degrees C. Experiments in which cultures were incubated with thrombospondin for 45 min and then incubated in medium containing no thrombospondin revealed two fractions of bound thrombospondin. One fraction was localized by indirect immunofluorescence to punctate structures; these structures were lost coincident with the rapid degradation of 50-80% of bound 125I-thrombospondin. The second fraction was localized to a trypsin-sensitive, fibrillar, extracellular matrix. 125I-Thrombospondin in the matrix was slowly degraded over a period of hours. Binding of 125I-thrombospondin to the extracellular matrix was not saturable and indeed was enhanced at thrombospondin concentrations greater than 3 X 10(-8) M. The ability of 125I-thrombospondin to bind to extracellular matrix was diminished tenfold by limited proteolytic cleavage with trypsin. Degradation of trypsinized 125I-thrombospondin was also diminished, although to a lesser extent than matrix binding. Heparin inhibited both degradation and matrix binding. These results suggest that thrombospondin may play a transitory role in matrix formation and/or organization and that specific receptors on the cell surface are responsible for the selective removal of thrombospondin from the extracellular fluid and matrix.

2001 ◽  
Vol 114 (1) ◽  
pp. 187-197 ◽  
Author(s):  
C. Unsold ◽  
M. Hyytiainen ◽  
L. Bruckner-Tuderman ◽  
J. Keski-Oja

Latent TGF-beta binding proteins (LTBPs) are components of the extracellular matrix (ECM). They belong to the fibrillin/LTBP-superfamily, and are high molecular weight glycoproteins characterized by EGF-like repeats and 8-Cys repeats. Most LTBPs associate with the small latent forms of TGF-beta. Their roles include to facilitate the secretion of latent TGF-beta and to target it to the ECM. In order to identify new matrix-binding domains of LTBP-1 and to characterize their association with the extracellular matrix, we have produced (in a mammalian expression system) partly overlapping recombinant fragments of its shorter form, LTBP-1S, and analyzed the binding of the purified fusion proteins to extracellular matrices of cultured human dermal and lung fibroblasts. Recombinant fragments from three different regions of the N- and C-termini showed affinity to the matrix. These interacting regions contain either the first (hybrid), second or fourth 8-Cys domains of the LTBP-1S molecule. They bound independently to the matrix. Each of them had an ability to inhibit the association of native exogenous LTBP-1 with fibroblast extracellular matrix. The interactions of the LTBP-1 fragments with the extracellular matrix resisted treatment with sodium deoxycholate, suggesting strong, possibly covalent binding. The binding occurred in a time- and dose-dependent fashion. The N-terminal fragments bound more readily to the matrices. With all fragments the binding took place both with intact fibroblast matrices and with matrices isolated by sodium deoxycholate. When using CHO cell layers, which form sparse matrices, only the N-terminal fragment of LTBP-1 was efficiently incorporated. The association of the binding fragments with isolated matrices was enhanced by soluble, cell-derived factors. The current data suggest that LTBP-1 contains three different domains with an ability to associate with the extracellular matrix.


1987 ◽  
Vol 104 (3) ◽  
pp. 601-610 ◽  
Author(s):  
P J McKeown-Longo ◽  
C A Etzler

Previous studies have suggested that the assembly of fibronectin into the extracellular matrix of cultured fibroblasts is mediated by specific matrix assembly receptors that recognize a binding site in the amino terminus of the fibronectin molecule (McKeown-Longo, P.J., and D.F. Mosher, 1985, J. Cell Biol., 100:364-374). In the presence of dexamethasone, human fibrosarcoma cells (HT-1080) acquired the ability to specifically bind exogenous plasma fibronectin and incorporate it into a detergent-insoluble extracellular matrix. Dexamethasone-induced fibronectin binding to HT-1080 cells was time dependent, dose dependent, and inhibited by cycloheximide. Saturation binding curves indicated that dexamethasone induced the appearance of 7.7 X 10(4) matrix assembly receptors per cell. The induced receptors exhibited a dissociation constant (KD) for soluble fibronectin of 5.0 X 10(-8) M. In parallel experiments, normal fibroblasts exhibited 4.1 X 10(5) receptors (KD = 5.3 X 10(-8) M) per cell. In the presence of cycloheximide, the induced fibronectin-binding activity on HT-1080 cells returned to uninduced levels within 12 h. In contrast, fibronectin-binding activity on normal fibroblasts was stable in the presence of cycloheximide for up to 54 h. The first-order rate constant (Kt = 2.07 X 10(-4) min-1) for the transfer of receptor-bound fibronectin to extracellular matrix was four- to fivefold less than that for normal fibroblasts (Kt = 1.32 X 10(-3) min-1). Lactoperoxidase-catalyzed iodination of HT-1080 monolayers indicated that a 48,000-mol-wt cell surface protein was enhanced with dexamethasone. The results from these experiments suggest that dexamethasone induces functional matrix assembly receptors on the surface of HT-1080 cells; however, the rate of incorporation of fibronectin into the matrix is much slower than that of normal fibroblasts.


2001 ◽  
Vol 114 (15) ◽  
pp. 2869-2878
Author(s):  
Katri Koli ◽  
Juha Saharinen ◽  
Mira Kärkkäinen ◽  
Jorma Keski-Oja

Small latent TGF-β consists of latency associated peptide (LAP) bound to the 25 kDa TGF-β by noncovalent interactions. Small latent TGF-β is secreted from cells and deposited into the extracellular matrix as covalent complexes with its binding proteins, LTBPs. Four LTBPs have been molecularly cloned and their structures contain repetitive sequences. The 3rd 8-Cys repeats of LTBP-1, -3 and -4 are able to associate with small latent TGF-β. We analyzed by RT-PCR the expression of LTBPs 1-4 in a panel of cultured human cell lines including fibroblasts of different origin, endothelial cells and immortalized keratinocytes. LTBPs were expressed in an overlapping manner, but differences in their expression levels were detected. SV-40 transformed human embryonic lung fibroblasts contained less of the mRNAs for the LTBPs, suggesting that malignant transformation leads to decrease in LTBP expression. A novel alternatively spliced form of LTBP-4 lacking the 3rd 8-Cys repeat (LTBP-4Δ8-Cys3rd) was identified. LTBP-4Δ8-Cys3rd does not bind TGF-β and it was found to be expressed in the same tissues as the full length LTBP-4. The exon-intron structure of LTBP-4 around the 3rd 8-Cys repeat was similar to those of LTBP-2 and -3. LTBP-4Δ8-Cys3rd was produced by alternative splicing over two exons. In addition, HL-60 promyelocytic leukemia cells expressed a splice variant lacking only one exon of this region. The expression of the non-TGF-β-binding variant of LTBP-4 may be important for the regulation of TGF-β deposition in tissues. Since LTBPs are a part of the extracellular matrix microfibrils, the LTBP-4Δ8-Cys3rd protein may also be involved in various structural functions not related to TGF-β signaling.


1986 ◽  
Vol 102 (3) ◽  
pp. 703-710 ◽  
Author(s):  
E Engvall ◽  
H Hessle ◽  
G Klier

Monoclonal antibodies reactive with the tissue form of type VI collagen were used to isolate the type VI collagen polypeptides from cultured fibroblasts and muscle cells. Two [35S]methionine-labeled polypeptides of 260 and 140 kD were found intracellularly, in the medium, and in the extracellular matrix of metabolically labeled cells. These polypeptides were disulfide cross-linked into very large complexes. The 260- and 140-kD polypeptides were intimately associated and could not be separated from each other by reduction without denaturation. In the absence of ascorbic acid, both polypeptides accumulated inside the cell, and their amounts in the medium and in the matrix were decreased. These results suggest that both the 260- and the 140-kD polypeptides are integral parts of the type VI collagen molecule. Examination of type VI collagen isolated from the intracellular pool by electron microscopy after rotary shadowing revealed structures corresponding to different stages of assembly of type VI collagen. Based on these images, a sequence for the intracellular assembly of type VI collagen could be discerned. Type VI collagen monomers are approximately 125 nm long and are composed of two globules separated by a thin strand. The monomers assemble into dimers and tetramers by lateral association. Only tetramers were present in culture media, whereas both tetramers and multimers were found in extracellular matrix extracts. The multimers appeared to have assembled from tetramers by end-to-end association into filaments that had prominent knobs and a periodicity of approximately 110 nm. These results show that, unlike other collagens, type VI collagen is assembled into tetramers before it is secreted from the cells, and they also suggest an extracellular aggregation mechanism that appears to be unique to this collagen.


1984 ◽  
Vol 98 (5) ◽  
pp. 1804-1812 ◽  
Author(s):  
R P Mecham ◽  
J G Madaras ◽  
R M Senior

We studied the process of elastogenic differentiation in the bovine ligamentum nuchae to assess the mechanisms that regulate elastin gene expression during development. Undifferentiated ( nonelastin -producing) ligament cells from early gestation animals initiate elastin synthesis when grown on an extracellular matrix (ECM) substratum prepared from late gestation ligamentum nuchae. ECM from ligaments of fetal calves younger than the time when elastin production occurs spontaneously in situ (i.e., beginning the last developmental trimester at approximately 180 d of gestation) does not stimulate elastin production in undifferentiated cells. Matrix-induced differentiation requires direct cell matrix interaction, is dependent upon cell proliferation after cell-matrix contact, and can be blocked selectively by incorporation of bromodeoxyuridine into the DNA of undifferentiated cells before (but not after) contact with inducing matrix. Quantitative analysis of elastin synthesis in young cells after matrix-induced differentiation indicates that the entire cell population is competent to respond to the matrix inducer, and continued synthesis of elastin after young cells are removed from the ECM substratum indicates that the phenotypic transition to elastin synthesis is stable and heritable. Although ligament cells do not require continuous contact with ECM to express the elastin phenotype, elastin synthesis is increased substantially when elastin-producing cells are grown on ligament matrix, suggesting that elastogenic differentiation is stabilized by ECM. The matrix substratum was also found to alter the distribution of tropoelastin between the medium and matrix cell layer. When grown on tissue culture plastic, ligament cells secrete greater than 80% of newly synthesized tropoelastin into the culture medium. When cultured on ECM, however, 50-70% of the newly synthesized tropoelastin remains associated with the cell layer and is cross-linked to form insoluble elastin as shown by the incorporation of radiolabeled lysine into desmosine.


Volume 4 ◽  
2004 ◽  
Author(s):  
Yiling Lu ◽  
Wen Wang

Dynamic compression of soft tissues affects tissue mechanical properties and metabolic activities. The effect is attributed, in part, to the movement of water and solutes in extracellular matrix, which alters the mechanical (e.g. fluid shear stress) and chemical (e.g. growth factors, cytokines and hormones) microenvironments for cells in the tissue. To quantify contributions of external dynamic loads on solute transport in extracellular matrix, we have applied a poroelastic theory to calculate the deformation of the matrix and the movement of the fluid. In the simplified two-dimensional model, the solid phase represented the matrix of collagens and proteoglycans and the liquid phase represented the interstitial fluid. Deformable matrix embedded with cells was immersed in a solution inside a well with rigid, impermeable walls. On top of the matrix, solution with known solute concentration existed. Solute moved into the matrix and was consumed by cells. Mechanical cyclic loads were applied over a central area on the top surface of the matrix, causing its deformation and extracellular fluid movement. Resulting cell density in the matrix changed with the time during the loading cycle and it varied with the location in the matrix as well. Movement of the extracellular fluid coupled with solute diffusion contributed to the overall solute transport in the matrix. Effects of different loading frequencies and amplitudes were investigated. Different sized molecules were also considered in the study. Results from the model confirmed experimental findings that cyclic loads facilitated solute transport in soft tissues. The effect was more significant for large sized molecules. Special attention was given to regions of the matrix where cells would initially remain metabolically inactive due to lower than the critical value of the solute concentration. Quantitative analysis of solute concentration distribution in the matrix made it possible to predict regions where cells became activated by the improved solute supply. The fact that more cells in tissues became metabolically active under dynamic loads exemplified most directly the effect of external dynamic loads on solute transport in soft tissues.


Author(s):  
Robert Williams ◽  
Che-Hung Lee ◽  
Sara E. Quella ◽  
David M. Harlan ◽  
Yuan-Hsu Kang

Monocyte adherence to endothelial or extracellular matrices plays an important role in triggering monocyte activation in extravascular sites of infection, chronic inflammatory disorders, and tissue damage. Migration of monocytes in the tissues involves the response to a chemoattractant and movement by a series of attachments and detachments to the extracellular matrices which are regulated by expression and distribution of specific receptors for the matrix proteins such as fibronectin (FN). The VSAs (very late antigens or beta integrins), a subfamily of the transmembrane heterodimeric integrin receptors, have been thought to play a major role in monocyte adherence to the extracellular matrices and cells. In this subfamily, VLA-5 and VLA-4 are believed to be the most essential integrins mediating monocyte adherence to FN. In the present report, we have established and compared different procedures for morphological evaluation of the expression and distribution of the FN receptors on human monocytes in order to investigate their response to endotoxin or cytokine stimulation.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1531-1534 ◽  
Author(s):  
LA Sporn ◽  
VJ Marder ◽  
DD Wagner

Abstract Large multimers of von Willebrand factor (vWf) are released from the Weibel-Palade bodies of cultured endothelial cells following treatment with a secretagogue (Sporn et al, Cell 46:185, 1986). These multimers were shown by immunofluorescent staining to bind more extensively to the extracellular matrix of human foreskin fibroblasts than constitutively secreted vWf, which is composed predominantly of dimeric molecules. Increased binding of A23187-released vWf was not due to another component present in the releasate, since releasate from which vWf was adsorbed, when added together with constitutively secreted vWf, did not promote binding. When iodinated plasma vWf was overlaid onto the fibroblasts, the large forms bound preferentially to the matrix. These results indicated that the enhanced binding of the vWf released from the Weibel-Palade bodies was likely due to its large multimeric size. It appears that multivalency is an important component of vWf interaction with the extracellular matrix, just as has been shown for vWf interaction with platelets. The pool of vWf contained within the Weibel-Palade bodies, therefore, is not only especially suited for platelet binding, but also for interaction with the extracellular matrix.


Sign in / Sign up

Export Citation Format

Share Document