Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains

2001 ◽  
Vol 114 (1) ◽  
pp. 187-197 ◽  
Author(s):  
C. Unsold ◽  
M. Hyytiainen ◽  
L. Bruckner-Tuderman ◽  
J. Keski-Oja

Latent TGF-beta binding proteins (LTBPs) are components of the extracellular matrix (ECM). They belong to the fibrillin/LTBP-superfamily, and are high molecular weight glycoproteins characterized by EGF-like repeats and 8-Cys repeats. Most LTBPs associate with the small latent forms of TGF-beta. Their roles include to facilitate the secretion of latent TGF-beta and to target it to the ECM. In order to identify new matrix-binding domains of LTBP-1 and to characterize their association with the extracellular matrix, we have produced (in a mammalian expression system) partly overlapping recombinant fragments of its shorter form, LTBP-1S, and analyzed the binding of the purified fusion proteins to extracellular matrices of cultured human dermal and lung fibroblasts. Recombinant fragments from three different regions of the N- and C-termini showed affinity to the matrix. These interacting regions contain either the first (hybrid), second or fourth 8-Cys domains of the LTBP-1S molecule. They bound independently to the matrix. Each of them had an ability to inhibit the association of native exogenous LTBP-1 with fibroblast extracellular matrix. The interactions of the LTBP-1 fragments with the extracellular matrix resisted treatment with sodium deoxycholate, suggesting strong, possibly covalent binding. The binding occurred in a time- and dose-dependent fashion. The N-terminal fragments bound more readily to the matrices. With all fragments the binding took place both with intact fibroblast matrices and with matrices isolated by sodium deoxycholate. When using CHO cell layers, which form sparse matrices, only the N-terminal fragment of LTBP-1 was efficiently incorporated. The association of the binding fragments with isolated matrices was enhanced by soluble, cell-derived factors. The current data suggest that LTBP-1 contains three different domains with an ability to associate with the extracellular matrix.

1984 ◽  
Vol 98 (1) ◽  
pp. 22-28 ◽  
Author(s):  
P J McKeown-Longo ◽  
R Hanning ◽  
D F Mosher

Thrombospondin was purified from human platelets and labeled with 125I, and its metabolism was quantified in cell cultures of human embryonic lung fibroblasts. 125I-Thrombospondin bound to the cell layer. The binding reached an apparent steady state within 45 min. Trichloroacetic acid-soluble radioactivity was detected in the medium after 30 min of incubation; the rate of degradation of 125I-thrombospondin was linear for several hours thereafter. Degradation of 125I-thrombospondin was saturable. The apparent Km and Vmax for degradation at 37 degrees C were 6 X 10(-8) M and 1.4 X 10(5) molecules per cell per minute, respectively. Degradation was inhibited by chloroquine or by lowering the temperature to 4 degrees C. Experiments in which cultures were incubated with thrombospondin for 45 min and then incubated in medium containing no thrombospondin revealed two fractions of bound thrombospondin. One fraction was localized by indirect immunofluorescence to punctate structures; these structures were lost coincident with the rapid degradation of 50-80% of bound 125I-thrombospondin. The second fraction was localized to a trypsin-sensitive, fibrillar, extracellular matrix. 125I-Thrombospondin in the matrix was slowly degraded over a period of hours. Binding of 125I-thrombospondin to the extracellular matrix was not saturable and indeed was enhanced at thrombospondin concentrations greater than 3 X 10(-8) M. The ability of 125I-thrombospondin to bind to extracellular matrix was diminished tenfold by limited proteolytic cleavage with trypsin. Degradation of trypsinized 125I-thrombospondin was also diminished, although to a lesser extent than matrix binding. Heparin inhibited both degradation and matrix binding. These results suggest that thrombospondin may play a transitory role in matrix formation and/or organization and that specific receptors on the cell surface are responsible for the selective removal of thrombospondin from the extracellular fluid and matrix.


1990 ◽  
Vol 110 (6) ◽  
pp. 2209-2219 ◽  
Author(s):  
G B Silberstein ◽  
P Strickland ◽  
S Coleman ◽  
C W Daniel

Exogenous transforming growth factor beta (TGF-beta 1) was shown in earlier studies to reversibly inhibit mouse mammary ductal growth. Using small plastic implants to treat regions of developing mammary glands in situ, we now report that TGF-beta 1 growth inhibition is associated with an ectopic accumulation of type I collagen messenger RNA and protein, as well as the glycosaminoglycan, chondroitin sulfate. Both macromolecules are normal components of the ductal extracellular matrix, which, under the influence of exogenous TGF-beta 1, became unusually concentrated immediately adjacent to the epithelial cells at the tip of the ductal growth points, the end buds. Stimulation of extracellular matrix was confined to aggregations of connective tissue cells around affected end buds and was not present around the TGF-beta 1 implants themselves, indicating that the matrix effect was epithelium dependent. Ectopic matrix synthesis was specific for TGF-beta 1 insofar as it was absent at ducts treated with other growth inhibitors, or at ducts undergoing normal involution in response to endogenous regulatory processes. These findings are consistent with the matrix-stimulating properties of TGF-beta 1 reported for other systems, but differ in their strict dependence upon epithelium. A possible role for endogenous TGF-beta 1 in modulating a mammary epithelium-stroma interaction is suggested.


1994 ◽  
Vol 124 (1) ◽  
pp. 171-181 ◽  
Author(s):  
J Taipale ◽  
K Miyazono ◽  
CH Heldin ◽  
J Keski-Oja

The role of latent transforming growth factor-beta (TGF-beta) binding protein (LTBP) in the association of TGF-beta 1 to the extracellular matrix of cultured fibroblasts and HT-1080 fibrosarcoma cells was studied by immunochemical methods. The matrices were isolated from the cells, and the levels of LTBP and TGF-beta 1 were estimated by immunoblotting and immunoprecipitation. LTBP, TGF-beta 1, and its propeptide (latency-associated peptide, LAP) were found to associate to the extracellular matrix. Immunoblotting analysis indicated that treatment of the cells with plasmin resulted in a concomitant time and dose dependent release of both LTBP and TGF-beta 1 from the extracellular matrix to the supernatant. Comparison of molecular weights suggested that plasmin treatment resulted in the cleavage of LTBP from the high molecular weight fibroblast form to a form resembling the low molecular weight LTBP found in platelets. Pulse-chase and immunoprecipitation analysis indicated that both the free form of LTBP and LTBP complexed to latent TGF-beta were efficiently incorporated in the extracellular matrix, from where both complexes were slowly released to the culture medium. Addition of plasmin to the chase solution resulted, however, in a rapid release of LTBP from the matrix. Fibroblast derived LTBP was found to associate to the matrix of HT-1080 cells in a plasmin sensitive manner as shown by immunoprecipitation analysis. These results suggest that the latent form of TGF-beta 1 associates with the extracellular matrix via LTBP, and that the release of latent TGF-beta 1 from the matrix is a consequence of proteolytic cleavage(s) of LTBP.


2020 ◽  
Vol 21 (17) ◽  
pp. 6324 ◽  
Author(s):  
Annamaria Sandomenico ◽  
Jwala P. Sivaccumar ◽  
Menotti Ruvo

Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naresh Polisetti ◽  
Anke Schmid ◽  
Ursula Schlötzer-Schrehardt ◽  
Philip Maier ◽  
Stefan J. Lang ◽  
...  

AbstractAllogenic transplants of the cornea are prone to rejection, especially in repetitive transplantation and in scarred or highly vascularized recipient sites. Patients with these ailments would particularly benefit from the possibility to use non-immunogenic decellularized tissue scaffolds for transplantation, which may be repopulated by host cells in situ or in vitro. So, the aim of this study was to develop a fast and efficient decellularization method for creating a human corneal extracellular matrix scaffold suitable for repopulation with human cells from the corneal limbus. To decellularize human donor corneas, sodium deoxycholate, deoxyribonuclease I, and dextran were assessed to remove cells and nuclei and to control tissue swelling, respectively. We evaluated the decellularization effects on the ultrastructure, optical, mechanical, and biological properties of the human cornea. Scaffold recellularization was studied using primary human limbal epithelial cells, stromal cells, and melanocytes in vitro and a lamellar transplantation approach ex vivo. Our data strongly suggest that this approach allowed the effective removal of cellular and nuclear material in a very short period of time while preserving extracellular matrix proteins, glycosaminoglycans, tissue structure, and optical transmission properties. In vitro recellularization demonstrated good biocompatibility of the decellularized human cornea and ex vivo transplantation revealed complete epithelialization and stromal repopulation from the host tissue. Thus, the generated decellularized human corneal scaffold could be a promising biological material for anterior corneal reconstruction in the treatment of corneal defects.


Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1531-1534 ◽  
Author(s):  
LA Sporn ◽  
VJ Marder ◽  
DD Wagner

Abstract Large multimers of von Willebrand factor (vWf) are released from the Weibel-Palade bodies of cultured endothelial cells following treatment with a secretagogue (Sporn et al, Cell 46:185, 1986). These multimers were shown by immunofluorescent staining to bind more extensively to the extracellular matrix of human foreskin fibroblasts than constitutively secreted vWf, which is composed predominantly of dimeric molecules. Increased binding of A23187-released vWf was not due to another component present in the releasate, since releasate from which vWf was adsorbed, when added together with constitutively secreted vWf, did not promote binding. When iodinated plasma vWf was overlaid onto the fibroblasts, the large forms bound preferentially to the matrix. These results indicated that the enhanced binding of the vWf released from the Weibel-Palade bodies was likely due to its large multimeric size. It appears that multivalency is an important component of vWf interaction with the extracellular matrix, just as has been shown for vWf interaction with platelets. The pool of vWf contained within the Weibel-Palade bodies, therefore, is not only especially suited for platelet binding, but also for interaction with the extracellular matrix.


1969 ◽  
Vol 41 (1) ◽  
pp. 298-311 ◽  
Author(s):  
Tom Elsdale ◽  
Robert Foley

Randomly seeded Petri dish cultures of embryonic human lung fibroblasts generate, in the course of their growth, highly ordered cellular arrangements. Thick, bilaterally symmetrical ridges with an axial polarity and an orthogonal, multilayered internal organization are observed within stationary cultures. The generation of these structures has been investigated. Ridges result from the spontaneous aggregation of cells in postconfluent cultures brought about by directed cell movements. These movements are promoted by the localized production of extracellular matrix sheets containing collagen, which provide new substrates for cellular colonization. Cells that have colonized one matrix substrate may secrete another above themselves, which will in turn be colonized. By a continuation of this cycle, thick stacks consisting of alternate layers of cells and matrix are produced to yield the observed aggregations. The distribution and shape of ridges in a culture imply that matrix substrates are confined to specific locations. The suggested control hypothesis assumes that all the cells in fibroblast cultures are potential producers of a single species of matrix. The serviceability of this matrix as a substrate for cellular colonization, however, is destroyed if the producer cells are motile. Matrix substrates, therefore, are only made by nonmotile cells.


Sign in / Sign up

Export Citation Format

Share Document