scholarly journals Immunoreactive myelin basic proteins are not detected when shiverer mutant Schwann cells and fibroblasts are co-cultured with normal neurons.

1984 ◽  
Vol 98 (4) ◽  
pp. 1291-1295 ◽  
Author(s):  
H D Shine ◽  
R L Sidman

Shiverer (shi) is an autosomal recessive mutation in mice that results in hypomyelination in the central nervous system (CNS) but normal myelination in the peripheral nervous system (PNS). Myelin basic proteins (MBPs) are virtually absent in both PNS and CNS. It is not known whether the cellular target in the PNS is the myelin-forming Schwann cell or another cell type which secondarily affects the Schwann cell. To determine the cellular target of the shi gene, we have adapted tissue culture techniques that allow co-culture of pure populations of mouse sensory neurons of one genotype with Schwann cells and fibroblasts of another genotype under conditions that permit myelin formation. These cultures were stained immunocytochemically as whole mounts to determine whether MBPs were expressed under various in vitro conditions. In single-genotype cultures, presence or absence of MBPs was consistent with earlier in vivo results: +/+ cultures were MBP-positive and shi/shi cultures were MBP-negative. In mixed-genotype cultures, visualization of MBPs in myelin accorded with the genotype of the non-neuronal Schwann cells and fibroblasts and not with the neurons--those cultures that contained +/+ non-neuronal cells were MBP-positive and those with shi/shi non-neuronal cells were MBP-negative, independent of the neuronal genotype. These results rule out neurons or circulating substances as mediators of the influence of the shi genetic locus on MBP synthesis and deposition in peripheral myelin.

2006 ◽  
Vol 2 (3) ◽  
pp. 217-224 ◽  
Author(s):  
KONSTANTIN WEWETZER ◽  
GUDRUN BRANDES

Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that promote neural repair under experimental conditions. It is a matter of debate in how far OECs resemble Schwann cells and whether they possess specific properties. Although OECs have been characterized mainly with respect to their regenerative effects after transplantation, both their cellular identity and the regulating factors involved have remained vague. The aim of this article is to define OEC and Schwann-cell identity in molecular terms, and to discuss crucial factors that are involved in determination in vitro and in vivo. Distinct OEC features such as the down-regulation of the low affinity neurotrophin receptor p75NTR by neuronal contact are apparent in vivo under physiological conditions, whereas OECs acquire a Schwann cell-like phenotype and up-regulate p75NTR expression in vitro and following transplantation into the lesioned spinal cord. This might indicate that establishment of the OEC phenotype depends on specific axonal stimuli. In this review we hypothesize that OECs and Schwann cells possess malleable cellular phenotypes that acquire distinct features only upon specific interaction with their natural neuronal partner. This concept is consistent with previous findings in vitro and in vivo, and might be relevant for studies that use OECs and Schwann cells for nervous system repair.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jui-Lung Shen ◽  
Yueh-Sheng Chen ◽  
Jing-Ying Lin ◽  
Yun-Chen Tien ◽  
Wen-Huang Peng ◽  
...  

This study evaluates the proliferative effects of danshen and its monomer extract, tanshinone IIA, on Schwann cell proliferation. A piece of silicone rubber was guided across a 15-mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of danshen (0–100 mg/mL). The results showed that danshen increased the expressions of uPA, cyclin D1, E and ERK, JNK, and P38 MAP kinases via the FGF-2 signaling pathway in a dose-dependent manner. RSC96, Schwann cells were also administered with danshen (0, 20, 40, 60, 80, and 100 μg/mL) and tanshinone IIA (0, 2, 4, 6, 8, and 10 μg/mL). In lower concentrations, danshen and tanshinone IIA exhibited an apparent effect on Schwann cells. Similar effects were also demonstrated in the FGF-2-uPA regulating cascade and cell cycle proliferative protein results. Schwann cell migration was elevated as well. We used MAPK-signaling chemical inhibitors and identified the proliferative effects of danshen and tanshinone IIA as MAPK-signaling dependent. The results from thein vitrosystems indicate that danshen and tanshinone IIA can be used to induce Schwann cell proliferation, andin vivoresults potentially suggest that danshen and tanshinone IIA might enhance neuron regeneration.


1992 ◽  
Vol 116 (6) ◽  
pp. 1455-1464 ◽  
Author(s):  
R Curtis ◽  
H J Stewart ◽  
S M Hall ◽  
G P Wilkin ◽  
R Mirsky ◽  
...  

Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreactivity is present in Schwann cell precursors and in mature non-myelin-forming Schwann cells both in vitro and in vivo. This immunoreactivity is shown by Western blotting to be a membrane-associated protein that comigrates with purified central nervous system GAP-43. Furthermore, metabolic labeling experiments demonstrate definitively that Schwann cells in culture can synthesize GAP-43. Mature myelin-forming Schwann cells do not express GAP-43 but when Schwann cells are removed from axonal contact in vivo by nerve transection GAP-43 expression is upregulated in nearly all Schwann cells of the distal stump by 4 wk after denervation. In contrast, in cultured Schwann cells GAP-43 is not rapidly upregulated in cells that have been making myelin in vivo. Thus the regulation of GAP-43 appears to be complex and different from that of other proteins associated with nonmyelin-forming Schwann cells such as N-CAM, glial fibrillary acidic protein, A5E3, and nerve growth factor receptor, which are rapidly upregulated in myelin-forming cells after loss of axonal contact. These observations suggest that GAP-43 may play a more general role in the nervous system than previously supposed.


2005 ◽  
Vol 168 (4) ◽  
pp. 655-666 ◽  
Author(s):  
Dongren Yang ◽  
Jesse Bierman ◽  
Yukie S. Tarumi ◽  
Yong-Ping Zhong ◽  
Reshma Rangwala ◽  
...  

Schwann cells form basal laminae (BLs) containing laminin-2 (Ln-2; heterotrimer α2β1γ1) and Ln-8 (α4β1γ1). Loss of Ln-2 in humans and mice carrying α2-chain mutations prevents developing Schwann cells from fully defasciculating axons, resulting in partial amyelination. The principal pathogenic mechanism is thought to derive from structural defects in Schwann cell BLs, which Ln-2 scaffolds. However, we found loss of Ln-8 caused partial amyelination in mice without affecting BL structure or Ln-2 levels. Combined Ln-2/Ln-8 deficiency caused nearly complete amyelination, revealing Ln-2 and -8 together have a dominant role in defasciculation, and that Ln-8 promotes myelination without BLs. Transgenic Ln-10 (α5β1γ1) expression also promoted myelination without BL formation. Rather than BL structure, we found Ln-2 and -8 were specifically required for the increased perinatal Schwann cell proliferation that attends myelination. Purified Ln-2 and -8 directly enhanced in vitro Schwann cell proliferation in collaboration with autocrine factors, suggesting Lns control the onset of myelination by modulating responses to mitogens in vivo.


1981 ◽  
Vol 95 (1) ◽  
pp. 215-230
Author(s):  
J. P. Brockes ◽  
K. J. Fryxell ◽  
G. E. Lemke

We have recently described the use of immunological methods to identify and purify rat Schwann cells. In dissociated cultures of neonatal sciatic nerve, all of the cells can be identified by antigenic criteria as either Schwann cells or fibroblasts. The fibroblasts may be removed by treatment with antiserum to the Thy-1 antigen and complement. The purified Schwann cells have been used to study the regulation of the expression of myelin components, and the stimulation of Schwann cell division by a soluble growth factor. Among the components of myelin, we have concentrated on the peripheral myelin glycoprotein P0, which constitutes 50–60% of the protein in peripheral myelin. We have studied the distribution of P0 in vitro and in vivo by immunofluorescence, immuno-autoradiography on SDS gels, and solid-phase radioimmunoassay. Our results support the hypothesis that P0 is induced specifically as a consequence of the interaction between the Schwann cell and the myelinated type of axon. The level of P0 in the myelin membrane is at least 1000-fold higher than in the Schwann cell membrane. Purified Schwann cells divide very slowly in a conventional tissue culture medium. This has allowed us to purify a new growth factor from extracts of brain and pituitary, tentatively named Glial Growth Factor (GGF). The activity resides in a basic protein with a native molecular weight of 6 × 10(4) daltons and a subunit molecular weight of 3 × 10(4) daltons, which is active at levels comparable to those of epidermal growth factor. GGF is mitogenic for Schwann cells, astrocytes and muscle fibroblasts.


1991 ◽  
Vol 112 (6) ◽  
pp. 1229-1239 ◽  
Author(s):  
M M Daston ◽  
N Ratner

P30 is a heparin-binding protein with adhesive and neurite outgrowth-promoting properties present at high levels in the developing rat central nervous system (Rauvala, H., and R. Pihlaskari. 1987 J. Biol. Chem. 262:16625-16635). Partial sequencing of p30 has revealed homology or identity with HMG-1 (Rauvala, H., J. Merenmies, R. Pihlaskari, M. Korkolainen, M.-L. Huhtala, and P. Panula. 1988. J. Cell Biol. 107:2292-2305), a 28-kD protein that was originally purified from the thymus (Goodwin, G.H., C. Sanders, and E. W. Johns. 1973. Eur. J. Biochem. 38:14-19) which binds DNA in vitro. We have analyzed the distribution of p30 in the developing rat peripheral nervous system (PNS). P30 was detected by immunohistochemistry and Western blot analysis using antibodies raised against intact p30 and against a synthetic peptide corresponding to the amino terminus of the p30 molecule. P30 was localized to nonnuclear compartments of neurons and peripheral glial cells (Schwann cells). P30 immunoreactivity of PNS neurons persisted into adulthood. In contrast, Schwann cell staining decreased after the second postnatal week and was not detectable in adult animals. Neuron-Schwann cell contact was correlated with diminished p30 levels in Schwann cells. Schwann cells of the normal adult sciatic nerve did not express p30; however, when deprived of axonal contact by nerve transection, the Schwann cells of the distal nerve stained intensely for p30. In addition, when Schwann cells and dorsal root ganglion neurons were grown in coculture, Schwann cells that were associated with neurites were not as intensely stained by anti-p30 as Schwann cells that were not in contact with neurons. The pattern of p30 expression during development and regeneration, and its apparent regulation by cell-cell contact suggests that p30 plays a role in the interaction between neurons and Schwann cells during morphogenesis of peripheral nerves.


1998 ◽  
Vol 7 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Mark H. Tuszynski ◽  
Norbert Weidner ◽  
Melissa Mccormack ◽  
Ian Miller ◽  
Henry Powell ◽  
...  

Schwann cells naturally support axonal regeneration after injury in the peripheral nervous system, and have also shown a significant, albeit limited, ability to support axonal growth and remyelination after grafting to the central nervous system (CNS). It is possible that Schwann cell-induced axonal growth in the CNS could be substantially increased by genetic manipulation to secrete augmented amounts of neurotrophic factors. To test this hypothesis, cultured primary adult rat Schwann cells were genetically modified using retroviral vectors to produce and secrete high levels of human nerve growth factor (NGF). These cells were then grafted to the midthoracic spinal cords of adult rats. Findings were compared to animals that received grafts of nontransduced Schwann cells. Spinal cord lesions were not placed prior to grafting because the primary aim of this study was to examine features of grafted Schwann cell survival, growth, and effects on host axons. In vitro prior to grafting, Schwann cells secreted 1.5 + 0.1 ng human NGF/ml/106 cells/day. Schwann cell transplants readily survived for 2 wk to 1 yr after in vivo placement. Some NGF-transduced grafts slowly increased in size over time compared to nontransduced grafts; the latter remained stable in size. NGF-transduced transplants were densely penetrated by primary sensory nociceptive axons originating from the dorsolateral fasciculus of the spinal cord, whereas control grafts showed significantly fewer penetrating sensory axons. Over time, Schwann cell grafts also became penetrated by TH- and DBH-labeled axons of putative coerulospinal origin, unlike control cell grafts. Ultrastructurally, axons in both graft types were extensively myelinated by Schwann cells. Grafted animals showed no changes in gross locomotor function. In vivo expression of the human NGF transgene was demonstrated for periods of at least 6 m. These findings demonstrate that primary adult Schwann cells 1) can be transduced to secrete augmented levels of neurotrophic factors, 2) survive grafting to the CNS for prolonged time periods, 3) elicit robust growth of host neurotrophin-responsive axons, 4) myelinate CNS axons, and 5) express the transgene for prolonged time periods in vivo. Some grafts slowly enlarge over time, a feature that may be attributable to the propensity of Schwann cells to immortalize after multiple passages. Transduced Schwann cells merit further study as tools for promoting CNS regeneration.


1993 ◽  
Vol 123 (5) ◽  
pp. 1223-1236 ◽  
Author(s):  
S Einheber ◽  
T A Milner ◽  
F Giancotti ◽  
J L Salzer

Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two integrin subunits, beta 1 and beta 4, in an in vitro myelination system and compared their expression to that of the glial adhesion molecule, the myelin-associated glycoprotein (MAG). In the absence of neurons, Schwann cells express significant levels of beta 1 but virtually no beta 4 or MAG. When Schwann cells are cocultured with dorsal root ganglia neurons under conditions promoting myelination, expression of beta 4 and MAG increased dramatically in myelinating cells, whereas beta 1 levels remained essentially unchanged. (In general agreement with these findings, during peripheral nerve development in vivo, beta 4 levels also increase during the period of myelination in sharp contrast to beta 1 levels which show a striking decrease.) In cocultures of neurons and Schwann cells, beta 4 and MAG appear to colocalize in nascent myelin sheaths but have distinct distributions in mature sheaths, with beta 4 concentrated in the outer plasma membrane of the Schwann cell and MAG localized to the inner (periaxonal) membrane. Surprisingly, beta 4 is also present at high levels with MAG in Schmidt-Lanterman incisures. Immunoprecipitation studies demonstrated that primary Schwann cells express beta 1 in association with the alpha 1 and alpha 6 subunits, while myelinating Schwann cells express alpha 6 beta 4 and possibly alpha 1 beta 1. beta 4 is also downregulated during Wallerian degeneration in vitro, indicating that its expression requires continuous Schwann cell contact with the axon. These results indicate that axonal contact induces the expression of beta 4 during Schwann cell myelination and suggest that alpha 6 beta 4 is an important mediator of the interactions of myelinating Schwann cells with the basal lamina.


2010 ◽  
Vol 78 (11) ◽  
pp. 4634-4643 ◽  
Author(s):  
Rosane M. B. Teles ◽  
Stephan R. Krutzik ◽  
Maria T. Ochoa ◽  
Rosane B. Oliveira ◽  
Euzenir N. Sarno ◽  
...  

ABSTRACT The ability of microbial pathogens to target specific cell types is a key aspect of the pathogenesis of infectious disease. Mycobacterium leprae, by infecting Schwann cells, contributes to nerve injury in patients with leprosy. Here, we investigated mechanisms of host-pathogen interaction in the peripheral nerve lesions of leprosy. We found that the expression of the C-type lectin, CD209, known to be expressed on tissue macrophages and to mediate the uptake of M. leprae, was present on Schwann cells, colocalizing with the Schwann cell marker, CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase), along with the M. leprae antigen PGL-1 in the peripheral nerve biopsy specimens. In vitro, human CD209-positive Schwann cells, both from primary cultures and a long-term line, have a higher binding of M. leprae compared to CD209-negative Schwann cells. Interleukin-4, known to be expressed in skin lesions from multibacillary patients, increased CD209 expression on human Schwann cells and subsequent Schwann cell binding to M. leprae, whereas Th1 cytokines did not induce CD209 expression on these cells. Therefore, the regulated expression of CD209 represents a common mechanism by which Schwann cells and macrophages bind and take up M. leprae, contributing to the pathogenesis of leprosy.


1946 ◽  
Vol 84 (4) ◽  
pp. 277-292 ◽  
Author(s):  
S. Edward Sulkin ◽  
Christine Zarafonetis ◽  
Andres Goth

Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell.


Sign in / Sign up

Export Citation Format

Share Document