neuron regeneration
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 11)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Wei Wang ◽  
Xun-Hu Gu ◽  
Min Li ◽  
Zhi-Juan Cheng ◽  
Sheng Tian ◽  
...  

Abstract The nuclear factor kappa B (NF-κB) pathway and inhibitor of NF-κB kinase β (IKKβ) are involved in Alzheimer disease (AD) pathogenesis. This study explored the mechanisms underlying IKKβ-mediated Aβ aggregation and neuron regeneration in APP.PS1 mice. Adenoviral transduction particles were injected into the hippocampal CA1 region of the mice to knock down or inhibit target genes. Morris water maze was performed to evaluate the cognitive function of the mice. Aβ deposition was determined by histological examination. sh-IKKβ plasmids and microRNA (miR)-155-5p inhibitor were transfected into Aβ1-42-induced N2a cells. The expressions of AD-related proteins were detected by Western blot. The interaction between S-phase kinase-associated protein 2 (SKP2) and IKKβ was assessed by co-immunoprecipitation. IKKβ knockdown (KD) and miR-155-5p inhibition ameliorated cognitive impairment, improved neuron regeneration, and attenuated Aβ deposition in APP/PS1 mice. SKP2 KD aggravated cognitive impairment, inhibited neuron regeneration, and promoted Aβ deposition in the mice. SKP2 regulated the stability of IKKβ protein via ubiquitination. MiR-155-5p regulates Aβ deposition and the expression of Aβ generation-related proteins in N2a cells via targeting SKP2. These results indicate that the miR-155-5p/SKP2/IKKβ axis was critical for pathogenesis in this AD model and suggest the potential of miR-155-5p as a target for AD treatment.


2021 ◽  
Author(s):  
Isabella Palazzo ◽  
Levi J. Todd ◽  
Thanh V. Hoang ◽  
Thomas A. Reh ◽  
Seth Blackshaw ◽  
...  

AbstractMüller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however NFkB activity is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFβ2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.


2021 ◽  
Vol 15 (4) ◽  
pp. 462-468
Author(s):  
Hui Zhen ◽  
Mingyue Zheng ◽  
Qian Song ◽  
Hongjin Liu ◽  
Zuoqing Yuan ◽  
...  

Author(s):  
Xiaoyu Yuan ◽  
Zhi Jia ◽  
Jin Li ◽  
Yanan Liu ◽  
Yuqin Huang ◽  
...  

Alzheimer’s disease (AD) is an incurable neurodegenerative disease. Repairing damaged nerves and promoting nerve regeneration are key ways to relieve AD symptoms. However, due to the lack of effective strategies...


2020 ◽  
Vol 12 (3) ◽  
pp. 035027 ◽  
Author(s):  
Indra Apsite ◽  
Gissela Constante ◽  
Martin Dulle ◽  
Lena Vogt ◽  
Anja Caspari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document