scholarly journals Mixed lymphocyte reactivity and cell-mediated lympholysis to trinitrophenyl-modified autologous lymphocytes in C57BL/10 congenic and B10.A recombinant mouse strains

1975 ◽  
Vol 141 (4) ◽  
pp. 930-934 ◽  
Author(s):  
GM Shearer ◽  
EC Lozner ◽  
TG Rehn ◽  
A Schmitt-Verhulst

Cell-mediated lympholysis (CML) to trinitrophenyl (TNP)-modified autologous splenic lymphocytes has been recently reported in the mouse (1). Both the sensitization and effector phases of this phenomenon were shown to be T-cell mediated. Effector cell specificity studies indicated that modification of the target cells is a necessary but insufficient requirement for cytolysis, and suggested that altered cell surface components controlled by genes mapping in the mouse major histocompatibility H-2 complex (MHC) are important in the specificity of the cytotoxic reaction (1). In allogeneic models the generation of cytotoxic effector cells has been shown to be preceded or accompanied by immunogen- induced proliferation of responding lymphocytes, i.e. a mixed lymphocyte reaction (MLR) (2-5), although the generation of effectors may not necessarily always be the consequence of extensive cell proliferation (5). If the induction of cytotoxic effector lymphocytes by modified syngeneic spleen cells is characteristic of sensitization with cellular alloantigens, one would expect to find that sensitization with TNP-modified autologous cells would also induce thymidine incorporation by the responding cells in the culture. The present report demonstrates that both stimulation of thymidine incorporation and generation of cytotoxic effector cells are part of the in vitro response to TNP-modified autologous lymphocytes. However, the MLR to TNP- modified autologous cells consistently appeared to be less pronounced when compared with an allogeneic MLR, whereas the cytotoxic activity of the effector cells generated by sensitization against TNP-modified autologous cells was frequently as high as that detected against H-2 alloantigens. These two components of reactivity to modified self are verified in several C57BL/10 congenic and B10.A recombinant mouse strains.

1976 ◽  
Vol 144 (4) ◽  
pp. 1134-1140 ◽  
Author(s):  
T G Rehn ◽  
J K Inman ◽  
G M Shearer

The specificity of C57BL/10 cytotoxic effector cells generated by in vitro sensitization with autologous spleen cells modified with a series of related nitrophenyl compounds was investigated. The failure of trinitrophenyl (TNP)-sensitized effector cells to lyse TNP-beta-alanylglycylglycyl(AGG)-modified target cells is presented as evidence contradicting the intimacy or dual receptor model or T-cell recognition in its simplest form. Data are also shown indicating that sensitization with N-(3-nitro-4-hydroxy-5-iodophenylacetyl)-AGG-modified stimulating cells generates noncross-reacting clones of cytotoxic effector cells.


1975 ◽  
Vol 141 (6) ◽  
pp. 1348-1364 ◽  
Author(s):  
G M Shearer ◽  
T G Rehn ◽  
C A Garbarino

Splenic lymphocytes from four C57BL/10 congenic resistant mouse strains were sensitized in vitro with trinitrophenyl (TNP)-modified autologous spleen cellsmthe effector cells generated were incubated with 51-Cr-labeled unmodified or TNP-modified spleen or tumor target cells, and the percentage of specific lympholysis determined. The results obtained using syngeneic-, congenic-, recombinante, and allogeneic-modified target cells indicated that TNP modification of the target cells was a necessary but insufficient requirement for lympholysis. Intra-H-2 homology either between modified stimulating cells and modified target cells or between responding lymphocytes and modified target cells was also important in the specificity for lysis. Homology at the K serological region or at K plus I-A in the B10.A and B10BR strains, and at either the D serological region or at some other region (possibly K) in the B10.D2 and C57BL/10 strains were shown to be necessary in order to detect lympholysis. Experiments using (B10itimes C57BL/10)F1 responding lymphocytes sensitized and assayed with TNP-modified parental cells indicated that the homology required for lympholysis was between modified stimulating and modified target cellsmthe possibility is raised that histocompatibility antigens may serve in the autologous system as cell surface components which are modified by viruses or autoimmune complexes to form cell-bound modified-self antigens, which are particularly suited for cell-mediated immune reactions. Evidence is presented suggesting that H-2-linked Ir genes are expressed in the TNP-modified autologous cytotoxic system. These findings imply that the major histocompatibility complex can be functionally involved both in the response potential to and in the formation of new antigenic determinants involving modified-self components.


1974 ◽  
Vol 140 (6) ◽  
pp. 1534-1546 ◽  
Author(s):  
Dolores J. Schendel ◽  
Fritz H. Bach

H-2 congenic mouse strains were tested in vitro to investigate the genetic control of cell-mediated lympholysis (CML). Combinations were selected such that differences in various segments of H-2 could be examined for their ability to stimulate production of effector cells and to serve as targets for lysis. Particular emphasis was directed towards understanding the roles of LD and SD. SD-region differences are important in the sensitization of effector cells and they also function as strong targets for lysis, or as markers for the CML targets. LD differences are also important for sensitization of cytotoxic effector cells, but they serve only as very weak targets for lysis. Collaboration occurs between LD and SD in generation of CML. The nature of this interaction can be of two types: together LD and SD can produce CML which neither difference alone can stimulate; LD can enhance a CML response stimulated by SD-region differences alone.


1975 ◽  
Vol 142 (4) ◽  
pp. 914-927 ◽  
Author(s):  
A M Schmitt-Verhulst ◽  
G M Shearer

Murine thymus-derived lymphocytes can be sensitized in vitro to trinitrophenyl (TNP)-modified autologous spleen cells (1, 2). Cytotoxic effector cells were generated which were specific for TNP-modified target cells expressing the same H-2K and H-2D serological regions as the modified stimulator cells (3, 7). Spleen cells from two C57BL/10 congenic strains of mice sharing common I-C, S, and D regions, but differing at K, I-A, and I-B regions, generated different levels of lytic responses to the shared modified H-2Dd products upon sensitization with auto logous TNP-modified cells. Lymphocytes from an F1 between responder and nonresponder strain generated a level of cytolysis toward the H-2Dd modified specificity which was of the same order of magnitude as that obtained with the high responder, irrespective of whether F 1 or either parental strain of modified stimulator cell was used. These results suggest that the modification of H-2Dd products resulted in formation of new antigenic determinants in both parental strains. However, the difference observed in responsiveness appeared to be due to a gene or genes mapping in the K, I-A, or I-B region which influenced the ability of the responding lymphocytes to react to these modified H-2Dd products. Responsiveness was expressed as a dominant trait in the F1.


1976 ◽  
Vol 144 (4) ◽  
pp. 996-1008 ◽  
Author(s):  
J R Neefe ◽  
D H Sachs

Monolayers formed of normal mouse spleen cells attached to polystyrene coated with poly-L-lysine were tested for their ability to bind specifically antigen-reactive cells in normal or primed mouse spleen. 88 to greater than 98% of the activity of cytotoxic populations was removed by a single adsorption. However, normal spleen cells or spleen cells previously primed in vitro could not be depleted of their capacity to be sensitized, even when adsorption effectively removed all residual cytotoxic activity from the same previously primed population. In fact, exposure to an immunoadsorbent augmented the ultimate cytotoxicity generated in a nonspecific fashion. This augmentation was especially dramatic in the case of a previously primed population and may have reflected the removal of a nonspecific suppressor. If antigen-reactive precursors cannot be removed efficiently by adsorption, other approaches to the generation of tolerant lymphoid populations, such as specific suppression of precursor differentiation must be sought.


1976 ◽  
Vol 143 (3) ◽  
pp. 601-614 ◽  
Author(s):  
J W Schrader ◽  
G M Edelman

Cytotoxic T lymphocytes were generated in vitro against H-2 compatible or syngeneic tumor cells. In vitro cytotoxic activity was inhibited by specific anti-H2 sera, suggesting that H-2 antigens are involved in cell lysis. Two observations directly demonstrated the participation of the H-2 antigens on the tumor cells in their lysis by H-2-compatible T cells. First, coating of the H-2 antigens on the target tumor cell reduced the number of cells lysed on subsequent exposure to cytotoxic T cells. Second, when cytotoxic T cells were activated against an H-2 compatible tumor and assayed against an H-2-incompatible tumor, anti-H-2 serum that could bind to the target cell, but not to the cytotoxic lymphocyte, inhibited lysis. H-2 antigens were also shown to be present on the cytotoxic lymphocytes. Specific antisera reacting with these H-2 antigens, but not those of the target cell, failed to inhibit lysis when small numbers of effector cells were assayed against H-2-incompatible target cells or when effector cells of F1-hybrid origin and bearing two H-2 haplotypes were assayed against a tumor cell of one of the parental strains. These findings suggest that it is the H-2 antigens on the tumor cell and not those on the cytotoxic lymphocytes that are important in cell-mediated lysis of H-2-compatible tumor cells.


1978 ◽  
Vol 24 (2) ◽  
pp. 182-186 ◽  
Author(s):  
Yoshaiki Fujimiya ◽  
Barry T. Rouse ◽  
Lorne A. Babiuk

Human peripheral blood polymorphonuclear neutrophils (PMN) were tested for their ability to act as effector cells in antibody-dependent cell cytotoxicity (ADCC) against Herpes simplex virus (HSV) infected target cells sensitized with anti-HSV serum. The PMN from all 29 individuals tested could mediate ADCC in the presence of a standard human anti-HSV serum. Since PMN are prominent cells early in herpes lesions, it was hypothesized that because ADCC could represent an in vitro model for antiviral recovery, perhaps the efficacy of PMN at mediating ADCC might be impaired in those subject to frequent recrudescent herpes. However, evidence for the hypothesis was not obtained since the PMN from individuals with frequent, infrequent, or unrecorded herpes labialis all showed approximately the same activity at mediating ADCC. Alternative ways in which PMN could be involved in antiviral recovery were discussed.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4311-4320 ◽  
Author(s):  
Katerina Chlichlia ◽  
Marcus E. Peter ◽  
Marian Rocha ◽  
Carsten Scaffidi ◽  
Mariana Bucur ◽  
...  

Abstract Nitric oxide (NO), an important effector molecule involved in immune regulation and host defense, was shown to induce apoptosis in lymphoma cells. In the present report the NO donor glycerol trinitrate was found to induce apoptosis in Jurkat cells that are sensitive to CD95-mediated kill. In contrast, a CD95-resistant Jurkat subclone showed substantial protection from apoptosis after exposure to NO. NO induced mRNA expression of CD95 (APO-1/Fas) and TRAIL/APO-2 ligands. Moreover, NO triggered apoptosis in freshly isolated human leukemic lymphocytes which were also sensitive to anti-CD95 treatment. The ability of NO to induce apoptosis was completely blocked by a broad-spectrum ICE (interleukin-1β converting enzyme)-protease/caspase inhibitor and correlated with FLICE/caspase-8 activation. This activation was abrogated in some neoplastic lymphoid cells but not in others by the inhibitor of protein synthesis cycloheximide. Our results were confirmed using an in vitro experimental model of coculture of human lymphoid target cells with activated bovine endothelial cells generating NO as effectors. Furthermore, the inhibition of endogenous NO production with the inducible NO synthase inhibitor NG-monomethyl-L-arginine caused a complete abrogation of the apoptotic effect. Our data provide evidence that NO-induced apoptosis in human neoplastic lymphoid cells strictly requires activation of caspases, in particular FLICE, the most CD95 receptor-proximal caspase. Depending on the cell line tested this activation required or was independent of the CD95 receptor/ligand system.


1978 ◽  
Vol 147 (4) ◽  
pp. 1065-1077 ◽  
Author(s):  
C A Janeway ◽  
P D Murphy ◽  
J Kemp ◽  
H Wigzell

The technique of antigen-driven, 5-bromo-deoxyuridine and light suicide has been adapted to eliminate the precursors of cytotoxic effector cells both for alloantigen and for 2,4,6-trinitrophenyl(TNP)-modified stimulator and target cells. Using this technique, the following observations have been made. Precursors of killer cells specific for alloantigen can be suicided independently of precursors of killer cells specific for TNP-modified self cells. The loss of activity during this procedure is not due to either specific or nonspecific suppressor cells, as judged by mixing experiments. With responder cells from F1 animals, it has been possible to show that precursors specific for TNP-modified cells from one parent are suicided independently of precursors specific for TNP-modified cells of the other parent, but only if the parental strains differ in the K and D regions of the H-2 complex. Cells of F1 mice derived from K and D identical, I region different, parental strains were specifically suicided by TNP-modified stimulator cells from either parent. However, the cross-reactive killing of TNP-self targets induced by stimulation with allogeneic cells is not eliminated by first suiciding with TNP-parental cells, suggesting that the precursors of these two types of TNP-self killer cells are different. This is compatible with reported differences in their specificity, as confirmed in this report. Finally, deletion of alloreactive cells by this technique reveals little or no reactivity specific for TNP-modified allogeneic stimulator cells. In summary, these results strongly suggest that recognition of self MHC antigens is preprogrammed in peripheral T cells of normal animals, and is not acquired during the immunization process. They also suggest that cells specific for modified alloantigen are relatively rare in the strains of mice studied.


1979 ◽  
Vol 150 (6) ◽  
pp. 1367-1382 ◽  
Author(s):  
T Taniyama ◽  
H T Holden

We have developed a system to induce oncornavirus-specific secondary cytotoxic response in vitro. When Moloney strain of murine sarcoma virus-immune spleen cells were cultivated with purified infectious Moloney murine leukemia virus (M-MuLV) or with supernates of tissue culture cells containing infectious virus, a virus-specific secondary cytotoxic response directed against type-specific determinant(s) of M-MuLV was generated in vitro, as determined by a 4-h 51Cr-release assay. The effector cells were susceptible to the treatment with anti-Thyl.2 plus complement, but were unrelated to natural killer cells (NK), because they could not lyse some target cells specific for M-MuLV in both the induction phase and the interaction between effector cells and target cells. Furthermore, a product of the env gene of M-MuLV, perhaps gp70, appeared to be responsible for this response, because viruses with recombinations in the env gene between ecotropic M-MuLV and a xenotropic virus failed to induce a response. When infectious M-MuLV was exposed to UV-light at different doses, the ability of UV-treated M-MuLV to induce a secondary cytotoxic response decreased in parallel with infectivity, indicating that infectivity was necessary for the induction of this response.


Sign in / Sign up

Export Citation Format

Share Document