scholarly journals Antibody to influenza virus matrix protein detects a common antigen on the surface of cells infected with type A influenza viruses.

1977 ◽  
Vol 146 (3) ◽  
pp. 690-697 ◽  
Author(s):  
W E Biddison ◽  
P C Doherty ◽  
R G Webster

Antisera to the type-specific internal influenza virus matrix (M) protein of a type A influenza virus were produced in goats. In the presence of complement, anti-M serum was cytotoxic for target cells which were infected with a variety of serologically distinct type A influenza viruses, but did not react with type B influenza virus-infected cells. Absorption experiments indicated that anti-M serum detected a common antigen(s) on the surface of type A-infected cells. This serological cross-reactivity parallels the cross-reactivity observed for the cytotoxic T-cell response to type A viruses.

1979 ◽  
Vol 149 (4) ◽  
pp. 856-869 ◽  
Author(s):  
T J Braciale

Purified type A influenza viral hemagglutinin stimulates an in vitro cell-mediated cytotoxic cell response that exhibits a high degree of specificity for the immunizing hemagglutinin. The response magnitude is proportional to the hemagglutinin dose used for stimulation. The lytic activity of the effector cells is H-2 restricted. Analysis of the specificity of the response indicated that these cytotoxic T cells readily distinguish target cells expressing serologically unrelated hemagglutinin from target cells bearing hemagglutinins serologically related to the stimulating hemagglutinin. Further analysis of the fine specificity of cytotoxic T-cell recognition with serologically cross-reactive type A influenza hemagglutinins revealed a hierarchy of cross-reactivity among these hemagglutinins that was the converse of the serologic hierarchy. These results are discussed in terms of possible differences and similarities in the specificity repertoire of cytotoxic T cells and antibodies. Possible implications of these findings from the standpoint of cytotoxic T-cell induction are also discussed.


1981 ◽  
Vol 153 (5) ◽  
pp. 1371-1376 ◽  
Author(s):  
T J Braciale ◽  
M E Andrew ◽  
V L Braciale

Based on theoretical considerations and several types of experimental evidence with heterogeneous cell populations it has been proposed that alloreactive T cells and major histocompatibility complex (MHC)-restricted T cells directed to foreign non-NHC antigens represent overlapping subsets. In this report we provide direct evidence for this hypothesis at the clonal level. We have isolated a cloned continuous influenza virus-specific cytotoxic T cell (CTL) line derived from a single (H-2b X H-2d)F1 CTL precursor which simultaneously exhibits H-2-restricted cytotoxicity of influenza A/Japan/305/57 virus in association with H-2Kd and alloreactive cytotoxicity for H-2Kk alloantigen. Cold target inhibition data demonstrate that both MHC-restricted and alloreactive recognition is mediated by the same cell population. In addition to cross-reactivity at the target cell level, we shown that this cloned CTL line can be specifically stimulated to proliferate either by A/Japan/305/57 virus-infected cells expressing H-2Kd or by uninfected cells of the H-2Kk haplotype.


1980 ◽  
Vol 151 (5) ◽  
pp. 1014-1025 ◽  
Author(s):  
C J Hackett ◽  
B A Askonas ◽  
R G Webster ◽  
K van Wyke

Monoclonal antibody to type-A influenza virus matrix (M)-protein was used to quantitate the appearance of M-protein on abortively infected P815 cells. After 16 h of infection with different type-A viruses, only a low amount of M-protein appears on the surface of infected cells (approximately 10(3) site/cell) in contrast to approximately 10(5) hemagglutinin molecules on each cell surface. However, virus replication is required for M-protein appearance. Analysis of solubilized membranes purified from 16-h-infected cells shows approximately 10(4) M-protein molecule/cell in the plasma membrane, a content that is consistent with the observed low surface expression, and that indicates that most of the M-protein is localized internally. We found no evidence that cross-reactive cytotoxic T cells could recognize M-protein; neither monoclonal antibody or hyperimmune anti-M-protein antiserum could inhibit T cell killing, either alone or in combination with monoclonal anti-H-2 antibody. Taken together, the low level of M-protein appearance and lack of T cell blocking by anti-M-protein antibody leaves doubt that M-protein is the antigen recognized by cross-reactive cytotoxic T cells.


1988 ◽  
Vol 167 (6) ◽  
pp. 1767-1779 ◽  
Author(s):  
F R Carbone ◽  
M W Moore ◽  
J M Sheil ◽  
M J Bevan

Antigen-specific cytotoxic T cells can be generated by primary in vitro stimulation of spleen cells from C57BL/6 mice with appropriate peptide fragments. This response can be elicited without prior in vivo immunization. Chicken OVA fragmented with either cyanogen bromide (CN OVA) or trypsin (T OVA) was used as a source of mixed peptides. A synthetic peptide, NP365-380, representing the sequence 365-380 from influenza virus A/PR/8 nucleoprotein, was also used, since this contains the main determinants recognized by CTL generated from H-2b mice infected with A/PR/8 virus. The primary in vitro cytotoxic T cell response was peptide specific, since targets were lysed only in the presence of appropriate peptide antigens. Native OVA could not elicit primary effectors in vitro nor could it sensitize targets for lysis by OVA digest-specific CTL. A synthetic peptide corresponding to residues 111-122 within the OVA sequence could sensitize targets for lysis by effectors induced against T OVA. Effectors generated by in vitro stimulation were CD8+, CD4-, and H-2Db-restricted for NP365-380 and T OVA recognition. CN OVA-specific effectors were also CD8+, CD4-, but surprisingly, were able to lyse a range of H-2-different targets in an antigen-specific manner. These effectors failed to lyse a tumor line that does not express class I MHC molecules. This broad MHC restriction pattern was also apparent at the clonal level. In all cases, the antipeptide CTL generated by primary in vitro stimulation were inefficient in lysing target cells expressing endogenous forms of antigens, such as influenza virus-infected cells or cells transfected with the OVA cDNA. However, cytotoxic T cell lines generated in vitro against the NP365-380 peptide did contain a minor population of virus-reactive cells that could be selectively expanded by stimulation with A/PR/8-infected spleen cells. These results are discussed in terms of class I-restricted T cell stimulation in the absence of antigen processing by high surface densities of peptide/MHC complexes.


Author(s):  
Chloe H. Lee ◽  
Mariana Pereira Pinho ◽  
Paul Buckley ◽  
Isaac Woodhouse ◽  
Graham Ogg ◽  
...  

AbstractWhile individuals infected with coronavirus disease 2019 (COVID-19) manifested a broad range in susceptibility and severity to the disease, the pre-existing immune memory of related pathogens can influence the disease outcome. Here, we investigated the potential extent of T cell cross-reactivity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be conferred by other coronaviruses and influenza virus, and generated a map of public and private predicted CD8+ T cell epitopes between coronaviruses. Moreover, to assess the potential risk of self-reactivity and/or diminished T cell response for peptides identical or highly similar to the host, we identified predicted epitopes with high sequence similarity with human proteome. Lastly, we compared predicted epitopes from coronaviruses with epitopes from influenza virus deposited in IEDB to support vaccine development against different virus strains. We believe the comprehensive in silico profile of private and public predicted epitopes across coronaviruses and influenza viruses will facilitate design of vaccines capable of protecting against various viral infections.


1977 ◽  
Vol 146 (3) ◽  
pp. 673-689 ◽  
Author(s):  
TJ Braciale

Two distinct subpopulations of cytotoxic T cells are generated in the primary or secondary response of mice to type A influenza viruses. One subpopulation is specific for the immunizing virus strain. The other subpopulation shows a high degree of cross-reactivity for heterologous type A virus of a different subtype. This report examines the possibility that distinct influenza virus antigens, expressed on the surface of the infected cell, are recognized by the different subpopulations of influenza-specific cytotoxic T cells. Data are presented which demonstrate that influenza A matrix protein, an internal virion antigen, is detectable on the surface of target cells infected with influenza A viruses of different subtypes. Since this viral antigen is type specific, i.e., serologically cross-reactive among all type A influenza viruses, it could serve as the target for cross-reactive cytotoxic T cells. To further examine the specificity of the two cytotoxic T-cell subpopulations, experiments were carried out by using the inhibitor of glycoprotein synthesis - 2-Deoxy-D-Glucose 2-DG. These experiments examine first the effect of 2-DG on the expression of influenza matrix protein and viral glycoprotein on the infected cell surface and second, the susceptibility of 2-DG-treated target cells to lysis by cytotoxic T cells. 2-DG inhibits the expression of the viral hemagglutinin glycoprotein on the cell surface but does not inhibit the expression of the nonglycosylated matrix protein. Furthermore, inhibition of glycoprotein synthesis in infected target cells abrogates the reactivity of infected target cells to lysis by virus strain-specific but not cross- reactive cytotoxic T cells. These findings suggest that the influenza glycoproteins (hemagglutinin and/or neuraminidase) and the nonglycosylated matrix protein are the targets for the virus strain- specific and cross-reactive cytotoxic T cells, respectively. These results are discussed in the light of available information on influenza virus structure and the biology of influenza infection and in terms of current models for cytotoxic T-cell recognition of virus-infected cells.


2012 ◽  
Vol 87 (3) ◽  
pp. 1400-1410 ◽  
Author(s):  
Donald M. Carter ◽  
Chalise E. Bloom ◽  
Eduardo J. M. Nascimento ◽  
Ernesto T. A. Marques ◽  
Jodi K. Craigo ◽  
...  

ABSTRACTIndividuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses.


1985 ◽  
Vol 162 (2) ◽  
pp. 663-674 ◽  
Author(s):  
A Yamada ◽  
M R Ziese ◽  
J F Young ◽  
Y K Yamada ◽  
F A Ennis

We have tested the abilities of various polypeptides of A/PR/8/34 (H1N1) virus, constructed by recombinant DNA techniques, to induce influenza virus-specific secondary cytotoxic T lymphocyte (CTL) responses. A hybrid protein (c13 protein), consisting of the first 81 amino acids of viral nonstructural protein (NS1) and the HA2 subunit of viral hemagglutinin (HA), induced H-2-restricted, influenza virus subtype-specific secondary CTL in vitro, although other peptides did not. Using a recombinant virus, the viral determinant responsible for recognition was mapped to the HA2 portion of c13 protein. Immunization of mice with c13 protein induced the generation of memory CTL in vivo. The CTL precursor frequencies of A/PR/8/34 virus- and c13 protein-immune mice were estimated as one in 8,047 and 50,312, respectively. These results indicate that c13 protein primed recipient mice, even though the level of precursor frequency was below that observed in virus-immune mice.


1980 ◽  
Vol 29 (2) ◽  
pp. 650-653
Author(s):  
R A Yetter ◽  
W H Barber ◽  
P A Small

Heterotypic immunity to influenza virus in ferrets operated against heterotypic influenza viruses but not heterologous viruses. Contrary to prior reports, the protection conferred lasted for at least 18 months. This type of immunity limited virus shedding but did not prevent infection. These results suggest that this phenomenon could play a role in determining the severity of infections caused by type A influenza viruses in humans.


1980 ◽  
Vol 29 (2) ◽  
pp. 719-723 ◽  
Author(s):  
C S Reiss ◽  
J L Schulman

M protein of influenza A virus was detected with rabbit antiserum by both indirect immunofluorescence and by antibody plus complement-mediated cytolysis on the cell surfaces of both productively and nonproductively infected cells. In contrast, antiserum to nucleoprotein failed to react with unfixed infected cells, but did bind to fixed infected cells, especially in the perinuclear area. Incorporation of antiserum to M protein in a T-cell-mediated cytotoxicity assay produced almost complete abrogation of lysis of H-2-compatible cells infected with an influenza A virus of a subtype which differed from that used to elicit the cytotoxic T cells. However, the antibody did not significantly block 51Cr release from cells infected with the homotypic type A influenza virus. These observations are in accord with the hypothesis that the cross-reactive cytotoxic T-cell responses seen with cells infected by heterotypic influenza A viruses are due to recognition of a common M protein.


Sign in / Sign up

Export Citation Format

Share Document