scholarly journals B-cell influences on the induction of allotype suppressor T cells

1979 ◽  
Vol 150 (1) ◽  
pp. 174-183 ◽  
Author(s):  
SJ Black ◽  
LA Herzenberg

Allotype suppressor T-cell (Ts) populations that persist for the life of the animal arise in (BALB/c × SJL)F(1) hybrids exposed perinatally to antibody to the paternal (Ig-1b) allotype on IgG(2a)-isotype immunoglobulin H chains. These Ts suppress Ig-lb production by depleting the supply of allotype- specific helper T cells (Th) required, in addition to carrier-specific Th, for the latter stages of Ig-1b memory B-cell differentiation. In this publication, we show that specific Ig-1 allotype Ts are induced by perinatal exposure to antisera which interfere with normal B-cell maturation, i.e., by antibodies reactive with surface IgM on immature precursors of IgG(2a), memory cells. Antibodies to IgM (Ig-6) allotypes carried on precursors induce specific suppression for the IgG2, allotype produced by progeny of the target precursor. Anti-Ig-6a and anti-Ig-6b induce Ts that specifically suppress Ig-1a and Ig-1b, respectively. Heterologous (goat) anti-IgM induces suppression for both IgG(2a) immunoglobulins (Ig-1a and Ig-1b). Ts activity in these antiprecursor-Ig-suppressed mice is expressed in adoptive transfer assays and, as with anti-Ig-1b-induced Ts, is rendered ineffective by cotransfer of adequate numbers of T cells but not B cells from nonsuppressed mice. The Ts induction, in contrast with Ts expression, is reversed by the introduction of appropriate adult B-cell populations from nonsuppressed donors. Taken together, these data suggest that the development of mature B cells plays a central role in the early establishment of the balance between helper cells and suppressor cells that determines whether Ts or Th will dominate in regulating Ig-1b production in adult animals.

Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


1980 ◽  
Vol 152 (5) ◽  
pp. 1274-1288 ◽  
Author(s):  
P Marrack ◽  
J W Kappler

The mode of action by bystander helper T cells was investigated by priming (responder X nonresponder) (B6A)F1 T cells with poly-L-(Tyr, Glu)-poly-D,L-Ala--poly-L-Lys [(TG)-A--L] and titrating the ability of these cells to stimulate an anti-sheep red blood cell (SRBC) response of parental B cells and macrophages in the presence of (TG)-A--L. Under limiting T cell conditions, and in the presence of (TG)-A--L, (TG)-A--L-responsive T cells were able to drive anti-SRBC responses of high-responder C57BL/10.SgSn (B10) B cells and macrophages (M0), but not of low-responder (B10.A) B cells and M0. Surprisingly, the (TG)-A--L-driven anti-SRBC response of B10.A B cells was not restored by addition of high-responder acessory cells, in the form of (B6A)F1 peritoneal or irradiated T cell-depleted spleen cells, or in the form of B10 nonirradiated T cell-depleted spleen cells. These results suggested that (TG)-A--L-specific Ir genes expressed by B cells controlled the ability of these cells to be induced to respond to SRBC by (TG)-A--L-responding T cells, implying that direct contact between the SRBC-binding B cell precursor and the (TG)-A--L-responsive helper T cells was required. Analogous results were obtained for keyhold limpet hemocyanin (KLH)-driven bystander help using KLH-primed F1 T cells restricted to interact with cells on only one of the parental haplotypes by maturing them in parental bone marrow chimeras. It was hypothesized that bystander help was mediated by nonspecific uptake of antigen [(TG)-A--L or KLH] by SRBC-specific b cells and subsequent display of the antigen on the B cell surface in association with Ir of I-region gene products, in a fashion similar to the M0, where it was then recognized by helper T cells. Such an explanation was supported by the observation that high concentrations of antigen were required to elicit bystander help. This hypothesis raises the possibility of B cell processing of antigen bound to its immunoglobulin receptor and subsequent presentation of antigen to helper T cells.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ting-ting Zhang ◽  
David G Gonzalez ◽  
Christine M Cote ◽  
Steven M Kerfoot ◽  
Shaoli Deng ◽  
...  

To reconcile conflicting reports on the role of CD40 signaling in germinal center (GC) formation, we examined the earliest stages of murine GC B cell differentiation. Peri-follicular GC precursors first expressed intermediate levels of BCL6 while co-expressing the transcription factors RelB and IRF4, the latter known to repress Bcl6 transcription. Transition of GC precursors to the BCL6hi follicular state was associated with cell division, although the number of required cell divisions was immunogen dose dependent. Potentiating T cell help or CD40 signaling in these GC precursors actively repressed GC B cell maturation and diverted their fate towards plasmablast differentiation, whereas depletion of CD4+ T cells promoted this initial transition. Thus while CD40 signaling in B cells is necessary to generate the immediate precursors of GC B cells, transition to the BCL6hi follicular state is promoted by a regional and transient diminution of T cell help.


1997 ◽  
Vol 27 (8) ◽  
pp. 2073-2079 ◽  
Author(s):  
Kazunaga Agematsu ◽  
Haruo Nagumo ◽  
Fen-Chun Yang ◽  
Takayuki Nakazawa ◽  
Keitaro Fukushima ◽  
...  

1983 ◽  
Vol 157 (2) ◽  
pp. 730-742 ◽  
Author(s):  
G J Prud'Homme ◽  
C L Park ◽  
T M Fieser ◽  
R Kofler ◽  
F J Dixon ◽  
...  

Lymph node and spleen cells of the autoimmune MRL/Mp-lpr/lpr mouse strain spontaneously produce (in the absence of mitogenic stimulation) a factor(s) that induces B cell differentiation. This factor is not produced by the congenic MRL/n mouse strain that lacks the lpr gene or by normal mouse strains. However, lymphoid cells of the B6-lpr/lpr (B6/1) strain also produce a B cell differentiation factor. Although the factor acts on resting B cells, its effect is greatly magnified by activating the B cells with anti-mu or lipopolysaccharide. MRL/l mice begin producing the factor as early as 1 mo of age but levels increase with age and appearance of lymphoproliferation. Cell depletion studies reveal that this factor is produced by T cells of the Lyt-1+2-phenotype. Because of its association with the lpr/lpr genotype, we term this B cell differentiation factor L-BCDF. Functional analysis of L-BCDF reveals that it acts regardless of cell density in culture and in the absence of interleukin 2 (IL-2). In fact, the increase in the production of L-BCDF by MRL/1 T cells with aging occurs concomitantly with a marked decrease in their ability to produce IL-2. No T cell replacing factor activity or B cell growth factor-like activity can be detected in MRL/l-derived supernatants. L-BCDF induces both IgM and IgG synthesis in lipopolysaccharide-activated B cells; however, it has a greater effect on IgG secretion. In particular, the production of IgG1, IgG2a, and IgG2b are markedly enhanced in the presence of L-BCDF. The spontaneous production of L-BCDF by T cells of SLE mice of lpr/lpr genotype suggests an association of this factor with autoimmunity.


1997 ◽  
Vol 185 (3) ◽  
pp. 551-562 ◽  
Author(s):  
Sanjiv A. Luther ◽  
Adam Gulbranson-Judge ◽  
Hans Acha-Orbea ◽  
Ian C.M. MacLennan

Mouse mammary tumor virus (MMTV[SW]) encodes a superantigen expressed by infected B cells. It evokes an antibody response specific for viral envelope protein, indicating selective activation of antigen-specific B cells. The response to MMTV(SW) in draining lymph nodes was compared with the response to haptenated chicken gamma globulin (NP-CGG) using flow cytometry and immunohistology. T cell priming occurs in both responses, with T cells proliferating in association with interdigitating dendritic cells in the T zone. T cell proliferation continues in the presence of B cells in the outer T zone, and B blasts then undergo exponential growth and differentiation into plasma cells in the medullary cords. Germinal centers develop in both responses, but those induced by MMTV(SW) appear later and are smaller. Most T cells activated in the T zone and germinal centers in the MMTV(SW) response are superantigen specific and these persist for weeks in lymph nodes draining the site MMTV(SW) injection; this contrasts with the selective loss of superantigen-specific T cells from other secondary lymphoid tissues. The results indicate that this viral superantigen, when expressed by professional antigen-presenting cells, drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production.


Blood ◽  
2015 ◽  
Vol 125 (15) ◽  
pp. 2381-2385 ◽  
Author(s):  
Patricia Amé-Thomas ◽  
Sylvia Hoeller ◽  
Catherine Artchounin ◽  
Jan Misiak ◽  
Mounia Sabrina Braza ◽  
...  

Key Points CD10 identifies a unique subset of fully functional germinal center TFH that are activated and amplified within the FL cell niche. FL CD10pos TFH specifically display an IL-4hiIFN-γlo cytokine profile and encompass the malignant B-cell-supportive TFH subset.


1976 ◽  
Vol 144 (2) ◽  
pp. 330-344 ◽  
Author(s):  
L A Herzenberg ◽  
K Okumura ◽  
H Cantor ◽  
V L Sato ◽  
F W Shen ◽  
...  

Allotype suppressor T cells (Ts) generated in SJL X BALB/c mice specifically suppress production of antibodies marked with the Ig-1a allotype. The studies presented here show that allotypes Ts suppress by specifically removing helper T cell (Th) activity required to facilitate differentiation and expansion of B cells to Ig-1b antibody-forming cells. We show first that Ts and Th belong to different T-cell subclasses as defined by Ly surface antigens. Ts are Ly2+Lyl- and thus belong to the same subclass as cytotoxic precursor and effector cells; Th are Lyl+Ly2- cells and thus belong to the subclass containing cells which can exert helper functions and initiate delayed hypersensitivity reactions. Placing these cells in these two subclasses shows that Th are different from Ts and suggests that they play different roles in regulating antibody responses. The difference in these roles is defined by the evidence presented here showing that Ts attack Th and regulate the antibody response by specifically regulating the availability of Th activity. We show that in allotype suppressed mice, Ts which suppress Ig-1b antibody production have completely removed the Th activity of helping Ig-1b cells without impairing Th activity which helps other IgB B cells. These findings imply the existence of allotype-specific Th for Ig-1b cells (Ig-1b Th). We directly establish that Ig-1b cells require such help by showing that carrier-primed spleen cells from Iga/Iga congenic hybrids help Ig-1a B cells from hapten-primed Igb/Iga donors but do not help Ig-1b B cells from the same donor in the same adoptive recipient.


Sign in / Sign up

Export Citation Format

Share Document