scholarly journals Activation of macrophages for enhanced release of superoxide anion and greater killing of Candida albicans by injection of muramyl dipeptide.

1980 ◽  
Vol 152 (6) ◽  
pp. 1659-1669 ◽  
Author(s):  
N P Cummings ◽  
M J Pabst ◽  
R B Johnston

The adjuvant muramyl dipeptide (MDP) has been shown to affect a number of macrophage functions in vitro. We studied the effect of subcutaneous injection of MDP into mice. Cultured peritoneal macrophages from treated mice displayed increased spreading, total cell protein, and specific activity of beta-glucosaminidase a constituent of macrophage lysosomes, and of lactate dehydrogenase. Generation of superoxide anion (O2-) by MDP-treated macrophages stimulated by contact with phorbol myristate acetate was enhanced by over fivefold to levels achieved by macrophages from bacillus Calmette-Guérin-infected mice. The enhancement in stimulated O2- release was noted by 1 h after injection of MDP, peaked by 3 h, and remained high for at least 48 h. Priming for enhancement of O2- release by MDP was similar in athymic nude mice and in normal littermates, suggesting that mature T lymphocytes are not involved in this MDP effect. Priming for enhanced stimulated O2- release, and morphologic and enzymic changes, were not achieved by injection of the D-D stereoisomer of MDP. Phagocytosis of Candida albicans was only slightly greater by macrophages from mice give MDP, but MDP-stimulated cells killed two times more C. albicans in vitro than did cells from untreated animals. When MDP was given 18 h before, simultaneously with, or 24 h after lethal infectious challenge with C. albicans, treated mice were protected compared with controls. These results suggest that injection of MDP effectively and rapidly activates macrophages in the recipient animal. This agent should serve as an important probe of macrophage physiology and, perhaps ultimately, as a means of enhancing host defense in humans.

1980 ◽  
Vol 151 (1) ◽  
pp. 101-114 ◽  
Author(s):  
M J Pabst ◽  
R B Johnston

After in vitro exposure to lipopolysaccharide (LPS) or muramyl dipeptide (MDP), cultured resident mouse peritoneal macrophages were primed to display enhanced generation of superoxide anion (O2-) in response to stimulation by phorbol myristate acetate (PMA) or opsonized zymosan. Priming with LPS (1 microgram/ml) produced a sevenfold enhancement of PMA-stimulated O2- generation; priming was detected within 30 min and persisted for at least 4 d. Exposure to MDP (1 muM) primed the macrophages to double their O2- release; the response was first observed after 4 h and persisted for at least 3 d. The priming response was not observed with stereoisomers of MDP, which are inactive as adjuvants. LPS and MDP appeared to work directly on the macrophages rather than indirectly by interacting with adherent lymphocytes: (a) Addition of nonadherent cell populations that contained lymphocytes had no effect on the response. (b) The response was normal with cells from nude mice, which lack mature T lymphocytes. (c) Macrophages from C3H/HeJ mice, whose B lymphocytes fail to respond to LPS, were weak in their response to priming LPS; the addition of normal (C3Heb/FeJ) nonadherent cells had no effect on this weak response. (d) The macrophage-like cell line J774.1 also showed enhanced O2--generating capacity after a 4-h exposure to LPS or MDP. The O2--generating capacity of macrophages primed with LPS in vitro was equivalent to that previously observed with cells elicited in vivo by injection of LPS or activated by infection with Bacille Calmette-Guérin. The data suggest that previous exposure to bacterial products could prime macrophages to respond with increased production of toxic oxygen metabolites on contact with invading microorganisms or tumor cells.


1980 ◽  
Vol 29 (2) ◽  
pp. 617-622 ◽  
Author(s):  
M J Pabst ◽  
N P Cummings ◽  
T Shiba ◽  
S Kusumoto ◽  
S Kotani

Mouse peritoneal macrophages, when treated with a lipophilic derivative of muramyl dipeptide either in vitro or in vivo by intraperitoneal injection, showed a more than fivefold increase in their ability to generate superoxide anion after stimulation of the macrophages with phorbol myristate acetate. This response was more than twice that observed with the parent molecule, muramyl dipeptide (MDP). Unlike MDP, which has a systemic effect, the lipophilic derivative, [B30]-MDP, did not alter the response of peritoneal macrophages when given subcutaneously in the flank, suggesting that [B30]-MDP remains localized at the site of injection. The enhanced effect of [B30]-MDP over MDP appeared to be due to the inherent lipophilicity of the molecule, and was probably not due to either stimulation of T lymphocytes or activation of the alternative pathway of complement.


1980 ◽  
Vol 28 (3) ◽  
pp. 1001-1008
Author(s):  
R I Lehrer ◽  
L G Ferrari ◽  
J Patterson-Delafield ◽  
T Sorrell

We tested the ability of rabbit macrophages to kill Candida albicans in vitro. Resident (unstimulated) alveolar macrophages killed 28.1 +/- 1.9% of ingested organisms in 4 h, whereas resident peritoneal macrophages killed only 15.2 +/- 1.3% (mean +/- standard error of the mean, P < 0.01). Peritoneal macrophages obtained from rabbits treated 3 weeks earlier with complete Freund adjuvant showed enhanced candidacidal activity relative to normally resident peritoneal cells (28.2 +/- 3.1%, P < 0.01). Candidacidal activity by alveolar macrophages recovered from such treated animals was slightly enhanced relative to untreated alveolar macrophages (32.9 +/- 2.3%). Candidacidal activity by peritoneal and alveolar macrophages was not decreased by several agents (cyanide, azide, sulfadiazine, and phenylbutazone) that inhibit the ability of human blood monocytes to kill C. albicans. In contrast, candidacidal activity by alveolar macrophages was greatly diminished by iodoacetate, an ineffective inhibitor of this function in human monocytes. We conclude that rabbit macrophages kill C. albicans by a fungicidal mechanism distinct from the peroxidase-H2O2 mechanism of human granulocytes and monocytes, and that the fungicidal properties of peritoneal and alveolar macrophage populations are enhanced after nonspecific stimulation with complete Freund adjuvant.


1998 ◽  
Vol 66 (10) ◽  
pp. 4804-4810 ◽  
Author(s):  
Peter F. Mühlradt ◽  
Michael Kiess ◽  
Holger Meyer ◽  
Roderich Süssmuth ◽  
Günther Jung

ABSTRACT Mycoplasmas are potent macrophage stimulators. We describe the isolation of macrophage-stimulatory lipopeptidesS-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTDNNSSQSQQPGSGTTNT andS-[2,3-bisacyl(C16:0/C18:0)oxypropyl]cysteinyl-GQTN derived from the Mycoplasma hyorhinis variable lipoproteins VlpA and VlpC, respectively. These lipopeptides were characterized by amino acid sequence and composition analysis and by mass spectrometry. The lipopeptidesS-[2,3-bis(palmitoyloxy)propyl]cysteinyl-GQTNT andS-[2,3-bis(palmitoyloxy)propyl]cysteinyl-SKKKK and the N-palmitoylated derivative of the latter were synthesized, and their macrophage-stimulatory activities were compared in a nitric oxide release assay with peritoneal macrophages from C3H/HeJ mice. The lipopeptides with the free amino terminus showed half-maximal activity at 3 pM regardless of their amino acid sequence; i.e., they were as active as the previously isolated M. fermentans-derived lipopeptide MALP-2. The macrophage-stimulatory activity of the additionally N-palmitoylated lipopeptide or of the murein lipoprotein from Escherichia coli, however, was lower by orders of magnitude. It is concluded that the lack of N-acyl groups in mycoplasmal lipoproteins explains their exceptionally high in vitro macrophage-stimulatory capacity. Certain features that lipopolysaccharide endotoxin and mycoplasmal lipopeptides have in common are discussed. Lipoproteins and lipopeptides are likely to be the main causative agents of inflammatory reactions to mycoplasmas. This may be relevant in the context of mycoplasmas as arthritogenic pathogens and their association with AIDS.


1983 ◽  
Vol 244 (3) ◽  
pp. C227-C233 ◽  
Author(s):  
A. Aviv ◽  
H. Higashino ◽  
D. Hensten ◽  
J. W. Bauman ◽  
B. W. Lubit ◽  
...  

This study has focused on the characteristics of the Na+-K+-ATPase in in vitro preparations of vascular smooth muscle cells (VSMCs) derived from the rat carotid artery. The maximum velocity of enzyme reaction (Vmax) for the specific activity of the enzyme in the VSMCs' preparations was 2.36 +/- 0.04 (SE) mumol Pi X mg cell protein-1 X h-1 or 0.82 +/- 0.02 mumol Pi X 10(6) cells-1 X h-1. The activation of the enzyme by potassium, sodium and ATP has been investigated. The half-maximal values for potassium and sodium activation of the enzyme in the preparations were 1.18 and 10-20 meq/l, respectively. The respective Vmax values for potassium and sodium activation were reached at concentrations of 4-10 and 80-100 meq/l. The Michaelis constant for ATP was 0.83 mM. Calcium exerted a potent inhibition on the activity of the enzyme (I50 at 1 mM). It has been concluded that the Na+-K+-ATPase kinetic pattern in in vitro preparations of VSMCs is quite similar to that observed in homogenates or subcellular fractions of other tissues.


1977 ◽  
Vol 146 (6) ◽  
pp. 1648-1662 ◽  
Author(s):  
C F Nathan ◽  
R K Root

Using a specific and sensitive fluorometric assay, the H2O2 release from as few as 2 X 10(5) mouse peritoneal macrophages could be detected continuously and quantitated. It is emphasized that the assay measured H2O2 release, not production. Induction of H2O2 release required sequential application of two stimuli: the administration of an activating agent to the mice from 4 days to 10 wk before all harvest, and the exposure of the cells in vitro to a triggering agent. BCG was most effective as an activating agent, resulting in peritoneal macrophages which could be triggered to release H2O2 almost as copiously (8 nmol/10(6) macrophages per 5 min) as mouse peritoneal PMN (9 NMOL/10(6) PMN per 5 min). Casein and C. parvum could also serve as activators, but thioglycollate and FCS were ineffective after single injections. PMA was a potent triggering agent, resulting in a maximal rate of H2O2 release after a latency of about 40 s for cells in suspension. Other triggering agents included the ionophore A23187, concanavalin A in the presence of cytochalasin B, and phagocytosis. H2O2 release could be attributed to macrophages and PMN in peritoneal cell suspensions or in preparations of adherent peritoneal cells, but not to lymphocytes. Indirect evidence suggested that the H2O2 detected was formed from superoxide anion. These observations appear to justify renewed interest in the idea that H2O2 may be important in macrohpage antimicrobial and antitumor mechanisms.


2008 ◽  
Vol 54 (12) ◽  
pp. 1032-1042 ◽  
Author(s):  
Mineko Shibayama ◽  
Víctor Rivera-Aguilar ◽  
Elizabeth Barbosa-Cabrera ◽  
Saúl Rojas-Hernández ◽  
Adriana Jarillo-Luna ◽  
...  

Although innate and adaptive immunity both play a role in amoebiasis, the mechanisms involved in the elimination of Entamoeba histolytica are poorly understood. To provide more information about the innate immune mechanisms that may confer protection against invasive amoebiasis, we administered inflammatory substances (bacillus Calmette-Guérin, lipopolysaccharide, complete Freund’s adjuvant, or mineral oil) into the peritoneum of hamsters. The animals were then challenged with pathogenic trophozoites of E. histolytica and, after 7 days, the protective host response was analysed. We found that the nonspecific inflammatory response induced in the peritoneum was sufficient to prevent liver invasion by E. histolytica. In vitro experiments showed that the killing of trophozoites was mediated by peritoneal macrophages and a protein of 68 kDa with peroxidase activity.


Parasitology ◽  
1989 ◽  
Vol 98 (2) ◽  
pp. 253-257 ◽  
Author(s):  
P. Vincendeau ◽  
S. Daulouède ◽  
B. Veyret

SUMMARYTrypanosoma musculiare readily killed when phagocytosed by mononuclear phagocytes but the nature of the mediators of this cytotoxicity is unclear. Among the most potent mediators are oxygen-derived species. The generation of chemilumine-scence (CL) by peritoneal macrophages from 12 dayT. musculi-infected mice, which phagocytose and kill parasites when opsonizing antibodies are present, was recorded in the presence of antibody-coated trypanosomes. Taurine, a specific quencher of hypochlorous acid (HOCl) inhibited CL production by peritoneal macrophages, showing that HOCl is produced during phagocytosis ofT. musculi.In vitro, HOCl alone exerted a powerful trypanocidal activity which was inhibited in the presence of specific quenchers. The role of HOCl generated by phagocytes in trypanosome killing was studied using granulocytes which produce more oxygen-derived species than macrophages when stimulated. Phorbol myristate acetate-triggered granulocytes can destroyT. musculiand trypanosome killing is inhibited in the presence of taurine. These data demonstrate that HOC1 produced by phagocytes can effectively destroyT. musculi.


1986 ◽  
Vol 164 (5) ◽  
pp. 1700-1709 ◽  
Author(s):  
G G Wright ◽  
G L Mandell

We studied the pretreatment of human polymorphonuclear neutrophils (PMN) with purified preparations of the anthrax toxin components--protective antigen (PA), edema factor (EF), and lethal factor (LF)--and their effects on release of superoxide anion (O-2) after stimulation with the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). PMN isolated in the absence of lipopolysaccharide (LPS) (less than 0.1 ng/ml) released only small amounts of O-2 after FMLP stimulation; pretreatment with anthrax toxin had little effect. The release of O-2 was increased fivefold by prior treatment with 3 ng/ml LPS for 1 h at 37 degrees C, an effect referred to as priming. PMN were primed to an equivalent extent by treatment with 100 ng/ml N-acetyl-muramyl-L-alanyl-D-isoglutamine (muramyl dipeptide [MDP]). Pretreatment of PMN with anthrax toxin components PA plus EF or PA plus LF inhibited priming by LPS or MDP, as shown by the reduction in the release of O-2 up to 90% relative to controls not treated with toxin; single toxin components were inactive. The inhibition was markedly reduced when priming with LPS or MDP was carried out before exposure to toxin. O-2 release after stimulation by phorbol myristate acetate was not increased by priming, and pretreatment with toxin did not inhibit O-2 release after this stimulus. Evidently, anthrax toxin inhibits the priming that is normally induced in PMN by bacterial products and is necessary for the full expression of antimicrobial effects.


Sign in / Sign up

Export Citation Format

Share Document