scholarly journals Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer.

1986 ◽  
Vol 164 (5) ◽  
pp. 1516-1530 ◽  
Author(s):  
H J Stauss ◽  
C Van Waes ◽  
M A Fink ◽  
B Starr ◽  
H Schreiber

Tumor-specific transplantation antigens are antigens that can lead to complete immunological destruction of a transplanted cancer by the syngeneic host. When such antigens are expressed on cancers induced by chemical or physical carcinogens, then they are usually unique, i.e., antigenically different for each independently induced tumor. In this study, we show that the product of a gene encoding a novel MHC class I molecule and isolated from the murine UV light-induced regressor tumor 1591 represents one such unique tumor-specific transplantation antigen that causes tumor rejection. The major evidence comes from our finding that 1591 progressor variants regularly lost the gene encoding this antigen that is expressed in the parental tumor that regresses in normal mice; furthermore, reintroduction of this gene into a 1591 progressor variant by DNA transfection caused the progressor variant to regress in normal immunocompetent mice. Thus, the progressor tumor reverted to the parental regressor phenotype following transfection. Consistent with the conclusion that the expression of the novel MHC class I gene following transfection was responsible for the regressor phenotype is also our finding that a variant of the transfected tumor that had lost expression of the transfected gene resumed its progressive growth behavior. Finally, we show that the molecule encoded by the novel class I gene is specifically recognized by a syngeneic tumor-specific cytolytic T cell clone that we have previously shown to select in vitro for progressor variants from the parental regressor tumor cell line. It remains to be determined to what extent unique tumor-specific rejection antigens of other highly immunogenic regressor tumors are encoded by novel MHC class I genes and whether these genes represent germline mutations or somatic mutations caused by the carcinogen treatment.

1997 ◽  
Vol 185 (7) ◽  
pp. 1223-1230 ◽  
Author(s):  
Michael P. Crowley ◽  
Ziv Reich ◽  
Nasim Mavaddat ◽  
John D. Altman ◽  
Yueh-hsiu Chien

Recent studies have shown that many nonclassical major histocompatibility complex (MHC) (class Ib) molecules have distinct antigen-binding capabilities, including the binding of nonpeptide moieties and the binding of peptides that are different from those bound to classical MHC molecules. Here, we show that one of the H-2T region–encoded molecules, T10, when produced in Escherichia coli, can be folded in vitro with β2-microglobulin (β2m) to form a stable heterodimer in the absence of peptide or nonpeptide moieties. This heterodimer can be recognized by specific antibodies and is stimulatory to the γδ T cell clone, G8. Circular dichroism analysis indicates that T10/β2m has structural features distinct from those of classical MHC class I molecules. These results suggest a new way for MHC-like molecules to adopt a peptide-free structure and to function in the immune system.


Science ◽  
1993 ◽  
Vol 260 (5112) ◽  
pp. 1320-1322 ◽  
Author(s):  
T. Howcroft ◽  
K Strebel ◽  
M. Martin ◽  
D. Singer

2000 ◽  
Vol 51 (6) ◽  
pp. 491-495 ◽  
Author(s):  
A. Sato ◽  
Holger Sültmann ◽  
Werner E. Mayer ◽  
Jan Klein

1997 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
E Stang ◽  
J Kartenbeck ◽  
R G Parton

Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are labeled with antibodies to the caveolar marker protein, caveolin-1. SV40 is believed to use major histocompatibility complex (MHC) class I molecules as cell surface receptors. Using a number of MHC class I-specific monoclonal antibodies, we found that both viral infection and association of virus with caveolae were strongly reduced by preincubation with anti-MHC class I antibodies. Because binding of SV40 to MHC class I molecules may induce clustering, we investigated whether antibody cross-linked class I molecules also redistributed to caveolae. Clusters of MHC class I molecules were indeed shown to be specifically associated with caveolin-labeled surface pits. Taken together, the results suggest that SV40 may make use of MHC class I molecule clustering and the caveolae pathway to enter mammalian cells.


1990 ◽  
Vol 31 (5-6) ◽  
pp. 405-409 ◽  
Author(s):  
Guido Kroemer ◽  
Rima Zoorob ◽  
Charles Auffray

1985 ◽  
Vol 5 (6) ◽  
pp. 1295-1300
Author(s):  
Y Barra ◽  
K Tanaka ◽  
K J Isselbacher ◽  
G Khoury ◽  
G Jay

The identification of a unique major histocompatibility complex class I gene, designated Q10, which encodes a secreted rather than a cell surface antigen has led to questions regarding its potential role in regulating immunological functions. Since the Q10 gene is specifically activated only in the liver, we sought to define the molecular mechanisms which control its expression in a tissue-specific fashion. Results obtained by transfection of the cloned Q10 gene, either in the absence or presence of a heterologous transcriptional enhancer, into a variety of cell types of different tissue derivations are consistent with the Q10 gene being regulated at two levels. The first is by a cis-dependent mechanism which appears to involve site-specific DNA methylation. The second is by a trans-acting mechanism which would include the possibility of an enhancer binding factor. The ability to efficiently express the Q10 gene in certain transfected cell lines offers an opportunity to obtain this secreted class I antigen in quantities sufficient for functional studies; this should also make it possible to define regulatory sequences which may be responsible for the tissue-specific expression of Q10.


H-2 Antigens ◽  
1987 ◽  
pp. 641-650
Author(s):  
Hans J. Stauss ◽  
Mary Ann Fink ◽  
Barbara Starr ◽  
Hans Schreiber
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document