scholarly journals Deletion of potentially self-reactive T cell receptor specificities in L3T4-, Lyt-2- T cells of lpr mice.

1988 ◽  
Vol 168 (6) ◽  
pp. 2221-2229 ◽  
Author(s):  
B L Kotzin ◽  
S K Babcock ◽  
L R Herron

The current study examines the possibility that the TCR repertoire of L3T4-, Lyt-2- cells in lpr/lpr mice is enriched for self-reactive specificities. T cells utilizing V beta 17a and V beta 8.1 gene products have been shown to be clonally eliminated in nonautoimmune mice expressing I-Ek and Mlsa/H-2k, respectively, because of their potential self reactivity. We quantitated these V beta specificities in lymph nodes and spleens of lpr/lpr mice. The results indicate that lpr-dependent L3T4-/Lyt-2- T cells, similar to normal peripheral T cells, have undergone a repertoire modification such that potential self-reactive V beta specificities have been eliminated. Evidence for tolerance in this population provides insight into the development of these aberrant cells, and may also have important implications for normal T cell development in the thymus.

1989 ◽  
Vol 170 (4) ◽  
pp. 1335-1346 ◽  
Author(s):  
M S Vacchio ◽  
R J Hodes

Previous reports of TCR V beta usage, studying either expression of a single V beta in a wide panel of strains (6, 7, 10, 12, 13), or expression of multiple V beta s in a very limited strain distribution (14, 15), have identified instances of clonal deletion of potentially autoreactive T cells specific for either self E alpha E beta or minor lymphocyte stimulatory (Mls) antigens. The present study has investigated the range of self antigens that can influence V beta usage by evaluating expression of 16 V beta families in 30 strains of mice. It was found that significant decreases in expression occur in at least 8 of the 16 V beta families and that dominant influences on the T cell V beta repertoire are exerted by expression of Mlsa, Mlsc, and MHC gene products. Decreased expressions of V beta 5, -11, -12, and -16 were influenced by MHC gene products. The patterns of decreased expression seen in intra-MHC recombinant strains and strains of different non-MHC background were distinct for V beta 11, -12, and -16, suggesting that different ligands are involved in the deletion of T cells expressing each of these V beta genes. Mice expressing Mlsa show decreased expression of V beta 9 as well as V beta 6. Mlsc mice lacked V beta 3 expression in those strains where the expressed MHC type was compatible with a strongly stimulatory Mlsc phenotype. V beta 7 was strongly influenced by both MHC and non-MHC products that are not yet identified. These results demonstrate that strain-specific decreases of mRNA expression occur in a major portion of the TCR repertoire. Self antigens including Mlsa, Mlsc, and E alpha E beta, as well as additional MHC and non-MHC products, appear to induce these decreases in expression in the process of eliminating self-reactive T cells from the mature T cell pool.


1993 ◽  
Vol 23 (1) ◽  
pp. 250-254 ◽  
Author(s):  
Carlos Martínez-a ◽  
Miguel A. R. Marcos ◽  
Ignacio M. de Alboran ◽  
José María Alonso ◽  
Rafael de Cid ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3266-3266
Author(s):  
Pablo Laje ◽  
William H. Peranteau ◽  
Masayuki Endo ◽  
Philip W. Zoltick ◽  
Alan W. Flake

Abstract The developing fetal immune system provides a unique opportunity to manipulate normal immunologic development for therapeutic prenatal and anticipated postnatal interventions. In previous studies we have shown that allogeneic in utero hematopoietic cell transplantation (IUHCT) results in donor specific tolerance that can subsequently facilitate non-myeloablative postnatal cellular or organ transplants. It follows that in utero injection of transduced hematopoietic stem cells (HSC) could potentially induce tolerance to a transgene encoded protein. We hypothesized that expression of a transduced antigenic protein by HSC and their progeny would alter thymic T cell development resulting in deletion of antigen specific T-cells. To test this hypothesis, we used the mammary tumor virus (MTV) superantigen system to evaluate the effect of IUHCT of transduced HSC on T cell development. In this system, expression of different MTV oncogenes by different I-E+ strains of mice results in deletion of T cells expressing the relevant Vβ T cell receptor. Specifically, mice which are Mtv7+ delete T cells expressing the Vβ6 T-cell receptor. In this study, CD150+CD48− enriched Balb/c (I-E+ Mtv7−) HSC were transduced with an HIV-based lentivirus expressing MTV7 under an MND promoter. 1.5E+05 transduced cells were injected intravascularly via the vitelline vein into E14 Balb/c fetuses. Non-injected age matched naive Balb/c mice served as the control group. The peripheral blood (PB) and thymuses of injected fetuses and control mice were harvested at day of life (DOL) 10, 20 and 60 and analyzed by flow cytometry for T lymphocyte Vβ6 expression. Additionally, the T cell composition of the thymus was assessed at DOL10 for CD4 and CD8 single positive (SP) and CD4/CD8 double positive (DP) cells. Thymic flow cytometric analysis at DOL10 revealed that greater than 98% of the T cells were CD4CD8 DP, a stage that has not yet undergone negative selection. No significant difference was noted in the percentage of thymic Vβ6+ DP T-cells at this time point or at DOL20 and DOL60. In contrast, there was a significant decrease in the percentage of Vβ6+ peripheral blood SP cells in those mice injected with MTV7 transduced HSC relative to control mice at DOL10, DOL20 and DOL60 (p<0.05) (Fig 1). The current study supports the ability of enriched transduced HSC to induce deletion of transgene specific T cells after IUHCT. In the future, this strategy may be useful to promote tolerance for pre or postnatal cellular or gene therapy. Figure Figure


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1451-1451
Author(s):  
Chao Wang ◽  
Qiang Gong ◽  
Weiwei Zhang ◽  
Javeed Iqbal ◽  
Yang Hu ◽  
...  

Abstract Introduction: Diversity of the T-cell receptor (TCR) repertoire reflects the initial V(D)J recombination events as shaped by selection by self and foreign antigens. Next generation sequencing is a powerful method for profiling the TCR repertoire, including sequences encoding complementarity-determining region 3 (CDR3). Peripheral T-cell lymphoma (PTCL) is a group of malignancies that originate from mature T-cells. T-cell clonality of PTCL is routinely evaluated with a PCR-based method to detect TCR gamma and less frequently beta chain rearrangements using genomic DNA. However, there are limitations with this approach, chief among which is the lack of sequence information. To date, the TCR repertoire of different subtypes of PTCL remains poorly defined. Objective: The purpose of this study was to determine the utility of RNA-seq for assessing T-cell clonality and analyzing the TCR usage in PTCL samples. Methods: We analyzed RNA-seq data from 30 angioimmunoblastic T-cell lymphoma (AITL), 23 Anaplastic large cell lymphoma (ALCL), 10 PTCL-NOS, and 17 NKCL. Data from naïve T cells, TFH cells, and T-effector cells (CD4+ CD45RA− TCRβ+ PD-1lo CXCR5lo PSGL-1hi) were obtained from publicly available resources. Referenced TCR and immunoglobulin transcripts according to the International ImMunoGeneTics Information System (IMGT) database were quantified by Kallisto software. We divided the pattern of Vβ (T-cell receptor beta variable region) into three categories: monoclonal (mono- or bi-allelic), oligoclonal (3-4 dominant clones), and polyclonal. CDR3 sequences were extracted by MiXCR program. PCR of the gamma chain using genomic DNA was utilized to validate the clonality of selected cases. Single nucleotide variants (SNVs) were called from aligned RNA-seq data using Samtools and VarScan 2 programs. Results: Analysis of RNA-seq data identified preferential usage of TCR-Vβ, Dβ (diversity region), and Jβ (joining region), length diversity of CDR3, and usage of nontemplated bases. Dominant clones could be identified by transcriptome sequencing in most cases of AITL (21/30), ALCL (14/23), and PTCL-NOS (7/10). Median CDR3 length is 42 nucleotides (nt) in normal T cells, 41 nt in ALCL, 48 nt in PTCL-NOS, and 44 nt in AITL. In 30 AITL samples, 20 showed monoclonal Vβ with a single peak, and 9 showed polyclonal Vβ. One case had two dominant clones with different CDR3, only one of which was in frame, implying biallelic rearrangements. As many as 3511 clones supported by at least four reads could be detected in polyclonal cases. In monoclonal cases, the dominant clone varied between 11.8% and 92.8% of TCR with Vβ rearrangements. TRBV 20-1, which is the most commonly used segment in normal T cells, is also frequently used in the dominant clones in AITL. The monoclonal AITL cases showed mutation of TET2, RHOA, DNMT3A or IDH2 whereas most of the polyclonal cases were negative or had low VAF mutation suggesting low or absent of tumor infiltrate in the specimen sequenced. There is no obvious correlation of any of the mutations with Vβ usage. Clonal B cell expansion was noted in some AITL samples. The occurrence of a preferential TRBV9 expansion in PTCL-NOS was striking. More than half of ALCL samples (14/23) showed expression of clonal Vβ, but 3/14 dominant clones were out-of-frame. γ chain expression was very low in cells expressing TCRαβ, but both expression levels and clonality were higher in TCRγδ expressing tumors. NKCL did not express significant levels of TCR Vβ or Vγ genes. Discussion/Interpretation: Transcriptome sequencing is a useful tool for understanding the TCR repertoire in T cell lymphoma and for detecting clonality for diagnosis. Clonal, often out-of-frame, Vβ transcripts are detectable in most ALCL cases and preferential TRBV9 usage is found in PTCL-NOS. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 100 (5) ◽  
pp. 1915-1918 ◽  
Author(s):  
Matthias Eyrich ◽  
Tanja Croner ◽  
Christine Leiler ◽  
Peter Lang ◽  
Peter Bader ◽  
...  

Normalization of restricted T-cell–receptor (TCR) repertoire is critical following T-cell–depleted (TCD) stem cell transplantation. We present a prospective study analyzing respective contributions of naive and memory T-cell subsets within the CD4+ and CD8+ compartments to the evolution of overall TCR-repertoire complexity following transplantation of CD34-selected peripheral blood progenitor cells from unrelated donors. During the first year after transplantation, sorted CD4/45RA, CD4/45R0, CD8/45RA, and CD8/45R0 subsets were analyzed at 3-month intervals for TCR-repertoire complexity by CDR3 size spectratyping. Skew in TCR-repertoire was observed only in early memory-type T cells. CD4+ and CD8+ subsets differed in clonal distribution of CDR3 sizes, with rapid Gaussian normalization of bands in CD4/45R0+ T cells. Naive T cells displayed normal repertoire complexity and contributed significantly to skew correction. Our data provide direct evidence for an important role of de novo maturation of naive T cells in normalization of an initially restricted TCR-repertoire following transplantation of CD34-selected, TCD-depleted peripheral blood progenitors from unrelated donors.


2010 ◽  
Vol 52 ◽  
pp. S263-S264
Author(s):  
R. Bakshi ◽  
V. Schlaphoff ◽  
P.V. Suneetha ◽  
P. Malinski ◽  
M.P. Manns ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document