scholarly journals T cell receptor ligation induces interleukin (IL) 2R beta chain expression in rat CD4,8 double positive thymocytes, initiating an IL-2-dependent differentiation pathway of CD8 alpha+/beta- T cells.

1993 ◽  
Vol 177 (2) ◽  
pp. 541-546 ◽  
Author(s):  
J H Park ◽  
R Mitnacht ◽  
N Torres-Nagel ◽  
T Hünig

The role of interleukin (IL)2 in intrathymic T cell development is highly controversial, and nothing is known about IL-2R expression on thymocytes of the T cell receptor (TCR) alpha/beta lineage undergoing TCR-driven differentiation events. We analyze here IL-2R alpha and beta mRNA expression in an in vitro system where newly generated rat CD4,8 double positive (DP) thymocytes respond to TCR ligation plus IL-2 (but not to either stimulus alone) with rapid differentiation to functional CD8 single positive T cells (Hünig, T., and R. Mitnacht. 1991. J. Exp. Med. 173:561). TCR ligation induced expression of IL-2R beta (but not alpha) chain mRNA in DP thymocytes. Addition of IL-2 then lead to functional maturation and expression of the IL-2R alpha chain. To investigate if the CD8 T cells generated via this IL-2R beta-driven pathway in vitro correspond to the bulk of CD8 T cells seeding peripheral lymphoid organs in vivo, we compared their phenotype to that of lymph node CD8 T cells. Surprisingly, analysis of CD8 cell surface expression using a novel anti-CD8 monoclonal antibody specific for the alpha/beta heterodimeric isoform, and of CD8 alpha and beta chain mRNA revealed that T cells generated by TCR ligation plus IL-2 resemble thymus-independent rather than thymus-derived CD8 cells in that they express CD8 alpha without beta chains. These findings demonstrate that TCR crosslinking induces functional IL-2R on immature DP rat thymocytes. In addition, they show that at least in vitro, CD8 alpha/alpha T cells are generated from TCR-stimulated DP thymocytes (which express the CD8 alpha/beta in the heterodimeric isoform) along an IL-2-driven pathway of T cell differentiation.

1991 ◽  
Vol 174 (2) ◽  
pp. 417-424 ◽  
Author(s):  
T Abo ◽  
T Ohteki ◽  
S Seki ◽  
N Koyamada ◽  
Y Yoshikai ◽  
...  

We demonstrated in the present study that with bacterial stimulation, an increased number of alpha/beta T cells proliferated in the liver of mice and that even T cells bearing self-reactive T cell receptor (TCR) (or forbidden T cell clones), as estimated by anti-V beta monoclonal antibodies in conjunction with immunofluorescence tests, appeared in the liver and, to some extent, in the periphery. The majority (greater than 80%) of forbidden clones induced had double-negative CD4-8-phenotype. In a syngeneic mixed lymphocyte reaction, these T cells appear to be self-reactive. Such forbidden clones and normal T cells in the liver showed a two-peak pattern of TCR expression, which consisted of alpha/beta TCR dull and bright positive cells, as seen in the thymus. A systematic analysis of TCR staining patterns in the various organs was then carried out. T cells from not only the thymus but also the liver had the two-peak pattern of alpha/beta TCR, whereas all of the other peripheral lymphoid organs had a single-peak pattern of TCR. However, T cells in the liver were not comprised of double-positive CD4+8+ cells, which predominantly reside in the thymus. The present results therefore suggest that T cell proliferation in the liver might reflect a major extrathymic pathway for T cell differentiation and that this hepatic pathway has the ability to produce T cells bearing self-reactive TCR under bacterial stimulation, probably due to the lack of a double-positive stage for negative selection.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 767-775 ◽  
Author(s):  
C Kasten-Sportes ◽  
S Zaknoen ◽  
RG Steis ◽  
WC Chan ◽  
EF Winton ◽  
...  

Abstract T-gamma lymphoproliferative disease (T-gamma LPD) is a chronic disorder of mature T cells that is associated with neutropenia and autoimmune phenomena. Although the progression of the lymphoproliferation is indolent, it is often associated with a monoclonal proliferation of T-cell-type large granular lymphocytes (LGL) that manifest multiple in vitro suppressor and cytotoxic activities. We considered the possibility that the granulocytopenia or anemia might represent an autoimmune disorder mediated by the monoclonal LGL via T-cell receptor (TCR) recognition of an antigen involved in hematopoiesis. Therefore, in an effort to characterize the usage of the TCR alpha-and beta-chain genes in patients with T-gamma LPD, we cloned and sequenced TCR alpha-and beta-chain mRNAs derived from the T-cell type LGL of five patients. The five patients studied did not use a common V alpha nor a common J alpha segment. However, an unusual finding was observed in one of the patients where the occurrence of a single variable-diversity-junctional (VDJ) rearrangement of the beta chain confirmed the monoclonal origin of the LGL proliferation. In accord with this evidence for monoclonality, many of the cells studied used a common V alpha (V alpha 19.1). In contrast to this common V alpha usage, there was a marked diversity of the J alpha segments and N-region addition that were associated with the V alpha 19.1 segment. This pattern of common V alpha usage associated with different N and J alpha segments suggests an immune-mediated selection process affecting the TCR alpha chain occurring after the transformation event that established the clone. We suggest that the T-cell-type LGL malignant clone might have developed autoreactivity conferred by the selected TCR alpha chain and that this autoreactivity might be implicated in this patient's anemia.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2965-2972 ◽  
Author(s):  
Y Kusunoki ◽  
Y Hirai ◽  
S Kyoizumi ◽  
M Akiyama

Abstract Rare T lymphocytes bearing CD3 surface antigen and T-cell receptor (TCR) alpha and beta chains, but lacking both CD4 and CD8 antigens, viz, TCR alpha beta+CD4–8- cells, appear at a frequency of 0.1% to 2% in peripheral blood TCR alpha beta+ cells of normal donors. Here we report two unusual cases, found among 100 healthy individuals studied, who showed an abnormally elevated frequency of these T cells, ie, 5% to 10% and 14% to 19%. Southern blot analyses of the TCR alpha beta+CD4–8- clones all showed the identical rearrangement patterns for each individual, demonstrating that these are derivatives of a single T cell. The same rearrangement patterns were also observed for the freshly isolated lymphocytes of TCR alpha beta+CD4-CD8- fraction, which excludes the possible bias in the processes of in vitro cloning. These TCR alpha beta+CD4–8- T cells were found to express other mature T-cell markers such as CD2, CD3, and CD5 antigens, as well as natural killer (NK) cell markers (CD11b, CD16, CD56, and CD57 antigens) for both individuals. Further, although lectin-dependent or redirected antibody- dependent cell-mediated cytotoxicities were observed for both freshly sorted lymphocytes of TCR alpha beta+CD4–8- fraction and in vitro established clones, NK-like activity was not detected.


1993 ◽  
Vol 178 (5) ◽  
pp. 1807-1811 ◽  
Author(s):  
W R Heath ◽  
J F Miller

CD8+ T cells taken directly from mice expressing a Kb-specific T cell receptor (TCR) transgene expressed the transgenic TCR in a bimodal profile as detected by flow cytometric analysis using a clonotype-specific monoclonal antibody. Those cells expressing the lower density of the transgenic TCR expressed the transgenic beta chain and two different alpha chains on their surface. One alpha chain was the product of the alpha transgene, whereas the other was derived by endogenous rearrangement. This report provides the first demonstration that T cells isolated directly from mice may express two different TCR clonotypes on their surface. The potential consequences of this finding for studies using TCR transgenic mice and for the induction of autoimmunity are discussed.


1993 ◽  
Vol 177 (4) ◽  
pp. 1079-1092 ◽  
Author(s):  
H R Rodewald ◽  
K Awad ◽  
P Moingeon ◽  
L D'Adamio ◽  
D Rabinowitz ◽  
...  

We have recently identified a dominant wave of CD4-CD8- (double-negative [DN]) thymocytes in early murine fetal development that express low affinity Fc gamma receptors (Fc gamma RII/III) and contain precursors for Ti alpha/beta lineage T cells. Here we show that Fc gamma RII/III is expressed in very immature CD4low single-positive (SP) thymocytes and that Fc gamma RII/III expression is downregulated within the DN subpopulation and before the CD3-CD8low SP stage in T cell receptor (TCR)-alpha/beta lineage-committed thymocytes. DN Fc gamma RII/III+ thymocytes also contain a small fraction of TCR-gamma/delta lineage cells in addition to TCR-alpha/beta progenitors. Fetal day 15.5 DN TCR-alpha/beta lineage progenitors can be subdivided into three major subpopulations as characterized by cell surface expression of Fc gamma RII/III vs. CD2 (Fc gamma RII/III+CD2-, Fc gamma RII/III+CD2+, Fc gamma RII/III-CD2+). Phenotypic analysis during fetal development as well as adoptive transfer of isolated fetal thymocyte subpopulations derived from C57B1/6 (Ly5.1) mice into normal, nonirradiated Ly5.2 congenic recipient mice identifies one early differentiation sequence (Fc gamma RII/III+CD2(-)-->Fc gamma RII/III+CD2(+)-->Fc gamma RII/III-CD2+) that precedes the entry of DN thymocytes into the CD4+CD8+ double-positive (DP) TCRlow/- stage. Unseparated day 15.5 fetal thymocytes develop into DP thymocytes within 2.5 d and remain at the DP stage for > 48 h before being selected into either CD4+ or CD8+ SP thymocytes. In contrast, Fc gamma RII/III+CD2- DN thymocytes follow this same developmental pathway but are delayed by approximately 24 h before entering the DP compartment, while Fc gamma RII/III-CD2+ display accelerated development by approximately 24 h compared with total day 15.5 thymocytes. Fc gamma RII/III-CD2+ are also more developmentally advanced than Fc gamma RII/III+CD2- fetal thymocytes with respect to their TCR beta chain V(D)J rearrangement. At day 15.5 in gestation, beta chain V(D)J rearrangement is mostly, if not entirely, restricted to the Fc gamma RII/III-CD2+ subset of DN fetal thymocytes. Consistent with this analysis in fetal thymocytes, > 90% of adult thymocytes derived from mice carrying a disrupting mutation at the recombination-activating gene 2 locus (RAG-2-/-) on both alleles are developmentally arrested at the DN CD2- stage. In addition, there is a fivefold increase in the relative percentage of thymocytes expressing Fc gamma RII/III in TCR and immunoglobulin gene rearrangement-incompetent homozygous RAG-2-/- mice (15% Fc gamma RII/III+) versus rearrangement-competent heterozygous RAG-2+/- mice (< 3% Fc gamma RII/III+). Thus, Fc gamma RII/III expression defines an early DN stage preceding V beta(D beta)I beta rearrangement, which in turn is followed by surface expression of CD2. Loss of Fc gamma RII/III and acquisition of CD2 expression characterize a late DN stage immediately before the conversion into DP thymocytes.


1988 ◽  
Vol 168 (6) ◽  
pp. 2231-2249 ◽  
Author(s):  
M L Toribio ◽  
A de la Hera ◽  
J Borst ◽  
M A Marcos ◽  
C Márquez ◽  
...  

In this report, we have undertaken the phenotypic, functional and molecular characterization of a minor (less than 5%) subpopulation of adult thymocytes regarded as the earliest intrathymic T-cell precursors. Pro-T cells were immunoselected and shown to express different hematopoietic cell markers (CD45, CD38, CD7, CD5) and some activation-related molecules (4F2, Tr, HLA class II), but lack conventional T cell antigens (CD2-1-3-4-8-). TCR-gamma RNA messages are already expressed at this early ontogenic stage, while alpha and beta chain TCR genes remain in germline configuration. In vitro analyses of the growth requirements of pro-T cells demonstrated the involvement of the IL-2 pathway in promoting their proliferation and differentiation into CD3+ CD4+ or CD8+ mature thymocytes. Moreover, during the IL-2-mediated maturation process rearrangements and expression of both alpha and beta chain TCR genes occurred, and resulted in the acquisition of alpha/beta as well as gamma/delta (either disulphide-linked or non-disulphide-linked) heterodimeric TCR among the pro-T cell progeny.


2021 ◽  
Author(s):  
Jing Li ◽  
Maxim Elisha Zaslavsky ◽  
Yapeng Su ◽  
Michael Sikora ◽  
Vincent van Unen ◽  
...  

Previous reports show that Ly49+CD8+ T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8+ T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR+CD8+ T cells can efficiently eliminate pathogenic gliadin-specific CD4+ T cells from Celiac disease (CeD) patients' leukocytes in vitro. Furthermore, we observe elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR+CD8+ T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8+ T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 823-823
Author(s):  
Marleen M Van Loenen ◽  
Renate de Boer ◽  
Gerdien L Volbeda ◽  
Avital L Amir ◽  
Renate S. Hagedoorn ◽  
...  

Abstract T cell receptor transfer to engineer tumor specific T cells is being explored as a strategy for adoptive immunotherapy. By retroviral introduction of T cell receptors (TCRs), large numbers of T cells with defined antigen specificity can be obtained. The in vivo efficacy of adoptively transferred TCR engineered T cells has been demonstrated in mouse studies and recently the first clinical trial with TCR engineered T cells was performed in melanoma patients. However, a potential drawback of TCR gene transfer is the formation of mixed TCR dimers. Chains of the introduced TCR can pair with the endogenous TCR chains, resulting in unknown specificities, and potentially in harmful reactivity against patient HLA molecules. We investigated whether TCR gene transfer leads to the generation of new detrimental reactivities by creating T cells that expressed mixed TCR dimers. To be able to discriminate between the antigen specificity of the mixed TCR dimers and the introduced as well as the endogenous TCR, we transduced mono-specific T cells with seven different antigen specific TCRs. As mono-specific T cells we used CMV-pp50 specific HLA-A1 restricted T cells. The transduced T cells were analyzed for newly acquired specificities against a large HLA-typed EBV-LCL panel covering almost all HLA class I and II molecules. We transduced several polyclonal virus specific T cell populations with the seven different antigen specific TCRs, and showed that in all T cell populations at least one of the seven TCR-transduced populations acquired new alloreactivities. Furthermore, by randomly combining TCR alpha and beta chains derived from different T cell clones we created 60 mixed TCR dimers of which 17 acquired alloreactivity. These results indicate that recombination of the introduced TCR chains with the endogenous TCR chains frequently gives rise to new allospecificities. To ascertain that the newly acquired alloreactivities were exerted by mixed TCR dimers, we introduced only TCR alpha or beta chains into CMV-pp50 specific monoclonal T cells, and demonstrated for example, that the introduction of a CMV pp65 specific TCR alpha chain led to a newly acquired reactivity that was HLA B58 restricted. The introduction of only the beta chain of a minor histocompatibility antigen (mHag) HA-1 specific TCR led to a newly acquired HLA B52 specific reactivity. Furthermore, we analyzed whether mixed TCR dimers consisting of conserved TCRs with the same specificity could acquire new harmful reactivity. We recombined mHag HA-2 specific TCR alpha and beta chains from 4 different T cell clones. Of the 12 mixed TCR dimers, a combination of the mHag HA-2 specific TCR alpha chain derived from the HA2.6 T cell clone with the mHag HA-2 specific beta chain of clone HA2.19 resulted in alloreactivity that was HLA DQ3 restricted. These results indicate that each recombination of TCR chains after TCR gene transfer can potentially result in a harmful new reactivity. In conclusion, mixed TCR dimers due to pairing of endogenous TCR chains with introduced TCR chains acquire potentially dangerous reactivities, both class I and class II restricted. To limit the chance of generating self- or alloreactive T cells, TCRs may be constructed allowing selective pairing of the TCR alpha chain with the corresponding TCR beta chain. Alternatively, we propose to use virus specific T cells as host cells for TCR gene transfer. Since they consist of a restricted TCR repertoire, the number of different chimeric TCRs formed will be limited. By introducing into these T cells as controls only the alpha or beta chain of the TCR of interest, the reactivity of these T cells and harmful reactivities of the mixed TCR dimers can be tested against different patient derived cell types.


1992 ◽  
Vol 175 (5) ◽  
pp. 1405-1408 ◽  
Author(s):  
M S Vacchio ◽  
O Kanagawa ◽  
K Tomonari ◽  
R J Hodes

Recognition of conventional foreign antigen by T cells is determined by the expression of multiple variable regions of both alpha and beta chains of the T cell receptor (TCR) alpha/beta heterodimer. In contrast, there exists a class of antigens that appears to interact with the TCR alpha/beta heterodimer through the variable region on the beta chain (V beta), independent of other TCR components, a property that has led to their designation as superantigens. The goal of the present study was to analyze V alpha use in V beta 6+ T cells responsive to the superantigen, Mlaa. Results indicate that while deletion of T cells expressing V beta 6 in Mlsa-expressing mice is essentially complete and therefore appears to occur regardless of V alpha usage, in vitro Mlsa stimulation of T cells from Mlsa-negative mice results in significant skewing of V alpha use among responding V beta 6+ T cells. This indicates that V alpha expression influences recognition of the superantigen, Mlsa by mature peripheral T cells.


Sign in / Sign up

Export Citation Format

Share Document