scholarly journals Functional interaction between human histocompatibility leukocyte antigen (HLA) class II and mouse CD4 molecule in antigen recognition by T cells in HLA-DR and DQ transgenic mice.

1994 ◽  
Vol 180 (1) ◽  
pp. 165-171 ◽  
Author(s):  
K Yamamoto ◽  
Y Fukui ◽  
Y Esaki ◽  
T Inamitsu ◽  
T Sudo ◽  
...  

Studies in vitro have suggested that a species barrier exists in functional interaction between human histocompatibility leukocyte antigen (HLA) class II and mouse CD4 molecules. However, whether mouse CD4+ T cells restricted by HLA class II molecules are generated in HLA class II transgenic mice and respond to peptide antigens across this barrier has remained unclear. In an analysis of T cell responses to synthetic peptides in mice transgenic for HLA-DR51 and -DQ6, we found that DR51 and DQ6 transgenic mice acquired significant T cell response to influenza hemagglutinin-derived peptide 307-319 (HA 307) and Streptococcus pyogenes M12 protein-derived peptide 347-397 (M6C2), respectively. Inhibition studies with several monoclonal antibodies showed that transgenic HLA class II molecules presented these peptides to mouse CD4+ T cells. Furthermore, T cell lines specific for HA 307 or M6C2 obtained from the transgenic mice could respond to the peptide in the context of relevant HLA class II molecules expressed on mouse L cell transfectants that lack the expression of mouse MHC class II. These findings indicate that interaction between HLA class II and mouse CD4 molecules is sufficient for provoking peptide-specific HLA class II-restricted T cell responses in HLA class II transgenic mice.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4351-4351
Author(s):  
Shigeo Fuji ◽  
Julia Fischer ◽  
Markus Kapp ◽  
Thomas G Bumm ◽  
Hermann Einsele ◽  
...  

Abstract Abstract 4351 Wilms‘ tumor protein-1 (WT1) is one of the most investigated tumor-associated antigens (TAA) in hematological malignancies. CD8 T-cell responses against several WT1-derived peptides have been characterized and are known to contribute to disease control after allogeneic hematopoietic stem cell transplantation (HSCT). Also the identification of human leukocyte antigen (HLA) class II-restricted CD4 T-cell epitopes from WT1 is a challenging task of T-cell-based cancer immunotherapy to improve the effectiveness of WT1 peptide vaccination. We found a highly immunogenic WT1 peptide composed of only 9 amino acids having the ability to induce IFN-γ secretion in CD4 T-cells in an HLA DR-restricted manner. This finding is of great interest as it was generally accepted that HLA class II binding peptides are composed of at least 12 amino acids being recognized by CD4 T-cells, whereas HLA class I binding peptides are composed of 8–11 amino acids being recognized by CD8 T-cells (Wang et al Mol. Immunol. 2002). However, both HLA class I and class II molecules bind to primary and secondary peptide anchor motifs covering the central 9–10 amino acids. Thus, considering this common structural basis for peptide binding there is a possibility that the WT1 9-mer peptide binds to HLA class II molecules, and induces CD4 T-cell responses. IFN-γ induction in response to several WT1 9-mer peptides was screened in 24 HLA-A*02:01 positive patients with acute myeloid leukemia or myelodysplastic syndrome after allogeneic HSCT. Responses to one WT1 9-mer peptide were exclusively detected in CD3+CD4+ T-cells of 2 patients after allogeneic HSCT, but not in CD3+CD4+ T-cells of their corresponding HSC donors. CD4+ T-cell responses to this WT1 9-mer peptide exhibited high levels of functional avidity, as IFN-γ induction was detected after stimulation with 100 ng peptide per mL. Peptide-induced IFN-γ production was confirmed with IFN-γ ELISPOT assays and the HLA restriction of the T-cell response was determined by HLA blocking antibodies. The reaction was significantly blocked by anti-pan HLA class II antibody (85 % reduction), but neither by pan-HLA class I nor by anti-HLA A2 antibody. To identify the subtype of HLA class II molecule, blocking assays with antibodies against HLA-DP, HLA-DR and HLA-DQ were performed. IFN-γ induction was completely abrogated by anti-HLA-DR antibody (99 % reduction) (fig 1, p value of unpaired student‘s t-test <0.0001 for the medium control vs anti-pan HLA class II antibody or anti-HLA-DR antibody, respectively). To test whether IFN-γ was exclusively induced in CD4 T cells, CD4 or CD8 T-cells were depleted from PBMC. Whereas CD8 T-cell depletion did not affect IFN-γ induction, CD4 T-cell depletion completely abrogated the WT1 9-mer peptide induced response (fig 2). CD4 T-cells responding to the WT1 9-mer peptide were indicated to be functional cytotoxic T-cells with an effector CD4 T-cell phenotype. Longitudinal analyses demonstrated the persistence and functionality of WT1 9-mer specific CD4 T-cells in PBMC of patients even at day 1368 after allogeneic HSCT. These data indicate for the first time that a TAA-derived 9-mer peptide can induce HLA class II-restricted CD4 T-cell responses. Vaccination with the characterized WT1 9-mer peptide can enhance the induction and maintenance of not only CD4 but also indirect CD8 T-cell responses. Considering that CD4 T-cells play an important role in tumor rejection, the possibility that other TAA-derived 9-mer peptides having the potential to induce CD4 T-cell responses should be explored in other settings of tumor immunology as well to improve vaccination strategies. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11072 ◽  
Author(s):  
Susan Pereira Ribeiro ◽  
Daniela Santoro Rosa ◽  
Simone Gonçalves Fonseca ◽  
Eliane Conti Mairena ◽  
Edilberto Postól ◽  
...  

2013 ◽  
Vol 2 (6) ◽  
pp. e24962 ◽  
Author(s):  
Hans-Henning Schmidt ◽  
Yingzi Ge ◽  
Felix J Hartmann ◽  
Heinke Conrad ◽  
Felix Klug ◽  
...  

2016 ◽  
Vol 84 (9) ◽  
pp. 2627-2638 ◽  
Author(s):  
Charles S. Rosenberg ◽  
Weibo Zhang ◽  
Juan M. Bustamante ◽  
Rick L. Tarleton

Trypanosoma cruziinfection drives the expansion of remarkably focused CD8+T cell responses targeting epitopes encoded by varianttrans-sialidase (TS) genes. Infection of C57BL/6 mice withT. cruziresults in up to 40% of all CD8+T cells committed to recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these mice fail to clearT. cruziinfection and subsequently develop chronic disease. One possible reason for the failure to cureT. cruziinfection is that immunodomination by these TS-specific T cells may interfere with alternative CD8+T cell responses more capable of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlledT. cruziinfection and developed effector CD8+T cells that maintained an activated phenotype. Memory CD8+T cells from drug-cured TSKB-transgenic mice rapidly responded to secondaryT. cruziinfection. In the absence of the response to TSKB20 and TSKB18, immunodominance did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8+T cell responses tightly and robustly focused on a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to controlT. cruziinfection. These data also indicate that the relative position of an epitope within a CD8+immunodominance hierarchy does not predict its importance in pathogen control.


2005 ◽  
Vol 174 (8) ◽  
pp. 5135.2-5135 ◽  
Author(s):  
Soren Schenk ◽  
Danielle D. Kish ◽  
Chunshui He ◽  
Tarek El-Sawy ◽  
Eise Chiffoleau ◽  
...  

2010 ◽  
Vol 207 (5) ◽  
pp. 1081-1093 ◽  
Author(s):  
Andreas Hermansson ◽  
Daniel F.J. Ketelhuth ◽  
Daniela Strodthoff ◽  
Marion Wurm ◽  
Emil M. Hansson ◽  
...  

Immune responses to oxidized low-density lipoprotein (oxLDL) are proposed to be important in atherosclerosis. To identify the mechanisms of recognition that govern T cell responses to LDL particles, we generated T cell hybridomas from human ApoB100 transgenic (huB100tg) mice that were immunized with human oxLDL. Surprisingly, none of the hybridomas responded to oxidized LDL, only to native LDL and the purified LDL apolipoprotein ApoB100. However, sera from immunized mice contained IgG antibodies to oxLDL, suggesting that T cell responses to native ApoB100 help B cells making antibodies to oxLDL. ApoB100 responding CD4+ T cell hybridomas were MHC class II–restricted and expressed a single T cell receptor (TCR) variable (V) β chain, TRBV31, with different Vα chains. Immunization of huB100tgxLdlr−/− mice with a TRBV31-derived peptide induced anti-TRBV31 antibodies that blocked T cell recognition of ApoB100. This treatment significantly reduced atherosclerosis by 65%, with a concomitant reduction of macrophage infiltration and MHC class II expression in lesions. In conclusion, CD4+ T cells recognize epitopes on native ApoB100 protein, this response is associated with a limited set of clonotypic TCRs, and blocking TCR-dependent antigen recognition by these T cells protects against atherosclerosis.


2001 ◽  
Vol 75 (13) ◽  
pp. 5985-5997 ◽  
Author(s):  
Robert W. Tindle ◽  
Karen Herd ◽  
Tracy Doan ◽  
Greg Bryson ◽  
Graham R. Leggatt ◽  
...  

ABSTRACT The E7 oncoprotein of human papillomavirus 16 (HPV16) transforms basal and suprabasal cervical epithelial cells and is a tumor-specific antigen in cervical carcinoma, to which immunotherapeutic strategies aimed at cytotoxic T-lymphocyte (CTL) induction are currently directed. By quantifying major histocompatibility complex class I tetramer-binding T cells and CTL in mice expressing an HPV16 E7 transgene from the keratin-14 (K14) promoter in basal and suprabasal keratinocytes and in thymic cortical epithelium, we show that antigen responsiveness of both E7- and non-E7-specific CD8+ cells is down-regulated compared to non-E7 transgenic control mice. We show that the effect is specific for E7, and not another transgene, expressed from the K14 promoter. Down-regulation did not involve deletion of CD8+ T cells of high affinity or high avidity, and T-cell receptor (TCR) Vβ-chain usage and TCR receptor density were similar in antigen-responsive cells from E7 transgenic and non-E7 transgenic mice. These data indicate that E7 expressed chronically from the K14 promoter nonspecifically down-regulates CD8+ T-cell responses. The in vitro data correlated with the failure of immunized E7 transgenic mice to control the growth of an E7-expressing tumor challenge. We have previously shown that E7-directed CTL down-regulation correlates with E7 expression in peripheral but not thymic epithelium (T. Doan et al., J. Virol. 73:6166–6170, 1999). The findings have implications for the immunological consequences of E7-expressing tumor development and E7-directed immunization strategies. Generically, the findings illustrate a T-cell immunomodulatory function for a virally encoded human oncoprotein.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 266 ◽  
Author(s):  
Susumu Iiizumi ◽  
Junya Ohtake ◽  
Naoko Murakami ◽  
Taku Kouro ◽  
Mamoru Kawahara ◽  
...  

Neoantigens derived from tumor-specific genetic mutations might be suitable targets for cancer immunotherapy because of their high immunogenicity. In the current study, we evaluated the immunogenicity of 10 driver mutations that are frequently expressed in various cancers using peripheral blood mononuclear cells from healthy donors (n = 25). Of the 10 synthetic peptides (27-mer) derived from these mutations, the six peptides from KRAS-G12D, KRAS-G12R, KRAS-G13D, NRAS-Q61R, PIK3CA-H1047R, and C-Kit-D816V induced T cell responses, suggesting that frequent driver mutations are not always less immunogenic. In particular, immune responses to PIK3CA-H1047R, C-Kit-D816V, KRAS-G13D, and NRAS-Q61R were observed in more than 10% of the donors. All six peptides induced human leukocyte antigen (HLA) class II-restricted CD4+ T cell responses; notably, PIK3CA-H1047R contained at least two different CD4+ T cell epitopes restricted to different HLA class II alleles. In addition, PIK3CA-H1047R and C-Kit-D816V induced antigen-specific CD8+ T cells as well, indicating that they might contain both HLA class I- and class II-restricted epitopes. Since the identified neoantigens might be shared by patients with various types of cancers and are not easily lost due to immune escape, they have the potential to be promising off-the-shelf cancer immunotherapy targets in patients with the corresponding mutations.


1995 ◽  
Vol 181 (3) ◽  
pp. 867-875 ◽  
Author(s):  
D M Altmann ◽  
D C Douek ◽  
A J Frater ◽  
C M Hetherington ◽  
H Inoko ◽  
...  

Analysis of HLA class II transgenic mice has progressed in recent years from analysis of single chain HLA class II transgenes with expression of mixed mouse/human heterodimers to double transgenic mice expressing normal human heterodimers. Previous studies have used either HLA transgenic mice in which there is a species-matched interaction with CD4 or mice which lack this interaction. Since both systems are reported to generate HLA-restricted responses, the matter of the requirement for species-matched CD4 remains unclear. We have generated triple transgenic mice expressing three human transgenes, DRA, DRB, and CD4, and compared HLA-restricted responses to peptide between human-CD4+ (Hu-CD4+) and Hu-CD4- littermates. We saw no difference between Hu-CD4+ and Hu-CD4- groups, supporting the notion that for some responses at least the requirement for species-matched CD4 may not be absolute. Evidence for positive selection of mouse T cell receptors in HLA-DR transgenic mice came both from the acquisition of new, HLA-restricted responses to various peptides and from an increased frequency of T cells using the TCR V beta 4 gene segment. An important goal with respect to the analysis of function in HLA transgenic mice is the clarification of mechanisms which underpin the recognition of self-antigens in human autoimmune disease. As a first step towards 'humanized' disease models in HLA transgenic mice, we analyzed the responses of HLA-DR transgenic mice to the human MPB 139-154 peptide which has been implicated as an epitope recognized by T cells of multiple sclerosis patients. We obtained T cell responses to this epitope in transgenic mice but not in nontransgenic controls. This study suggests that HLA transgenic mice will be valuable in the analysis of HLA-restricted T cell epitopes implicated in human disease and possibly in the design of new disease models.


1989 ◽  
Vol 170 (1) ◽  
pp. 279-289 ◽  
Author(s):  
D L Perkins ◽  
M Z Lai ◽  
J A Smith ◽  
M L Gefter

Previous data from many groups show that both class I and class II-restricted T cells recognize short synthetic peptides in the context of their respective MHC molecules (9-18), all of the peptides described to date are restricted to only a single class of MHC molecules; however, structural homology between the class I and II MHC molecules and the use of similar TCRs by class I and II-restricted T cells suggest that antigen recognition mechanisms are similar in both systems. To directly compare antigen recognition in the two systems, we analyzed peptides for the ability to function in both a class I and II-restricted system and found that seven of seven individual peptides tested stimulate both class I and II-restricted T cell responses. In addition, two of the peptides can function in different species stimulating both human class I and murine class II T cell responses. Thus, the process of T cell recognition of antigen in the context of MHC molecules was highly conserved in evolution not only between the class I and class II MHC systems, but also between the murine and human species.


Sign in / Sign up

Export Citation Format

Share Document