scholarly journals Does B7-1 expression confer antigen-presenting cell capacity to tumors in vivo?

1996 ◽  
Vol 183 (3) ◽  
pp. 769-776 ◽  
Author(s):  
A Y Huang ◽  
A T Bruce ◽  
D M Pardoll ◽  
H I Levitsky

Tumors engineered to express the costimulatory molecule B7-1 can elicit CD8+ cytotoxic T lymphocyte (CTL)-dependent antitumor responses in immunocompetent mice. It has been postulated that this result reflects direct priming of CTL by the modified tumor in vivo. Previous studies of the immune response to a B7-1- murine colon carcinoma expressing influenza nucleoprotein (NP) as a model tumor antigen have demonstrated the crucial role of bone marrow-derived antigen-presenting cells (APCs) in the priming of NP-specific CTL in vivo. In this system, no evidence of direct CTL priming by tumor was detected. We have performed a similar analysis to determine if B7-1 transfectant of this tumor results in the direct priming of CTL, and to compare this response to that primed by host APCs. When H-2b-->H-2bxd bone marrow chimeras were immunized with a single injection of CT26/NP/B7-1 (H-2d), NP-specific CTL were detected that were restricted to the bone marrow haplotype (H-2b), but not to the tumor haplotype. In contrast, CTL recognizing the NP antigenic epitope in the context of the tumor's major histocompatibility complex were detectable only after multiple immunizations. These results suggest that whereas B7-1+ tumor vaccines result in some degree of direct presentation to CD8+ T cells, the dominant mechanism of CTL priming is through the uptake and presentation of tumor antigens by bone marrow-deprived APCs. However, repeated immunization with B7-1+ tumor cells can efficiently expand the directly primed CD8+ CTL population.

Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2871-2878 ◽  
Author(s):  
Pedro Horna ◽  
Alex Cuenca ◽  
Fengdong Cheng ◽  
Jason Brayer ◽  
Hong-Wei Wang ◽  
...  

AbstractBone marrow-derived antigen-presenting cells (APCs) play a central role in the induction of tolerance to tumor antigens expressed by B-cell lymphomas. Here we show that in vivo disruption of this APC-mediated tolerogenic mechanism unveils an intrinsic ability of malignant B cells to efficiently present tumor antigens to antigen-specific CD4+ T cells, resulting in a strong antitumor effect. This intrinsic antigen-presenting ability of malignant B cells is, however, overridden by tolerogenic bone marrow-derived APCs, leading instead to T-cell unresponsiveness and lack of antitumor effect. These results highlight the concept that therapeutic strategies aimed at enhancing the antigen-presenting function of B-cell lymphomas might not succeed unless the tolerogenic mechanisms mediated by bone marrow-derived APCs are disrupted in the first place.


Blood ◽  
2002 ◽  
Vol 99 (4) ◽  
pp. 1327-1331 ◽  
Author(s):  
Konrad Kronenberger ◽  
Andreas Dieckmann ◽  
Michael Selmayr ◽  
John Strehl ◽  
Ulrich Wahl ◽  
...  

Trioma cell vaccination is a potent new immunologic approach for the therapy of malignant B-cell lymphoma. It is based on targeting tumor antigens to internalizing receptors on antigen-presenting cells (APCs). Tumor cells are fused to an APC-specific hybridoma, where they are converted to trioma cells that include potentially all lymphoma-derived antigens and that express the APC-binding arm. In this study, the mechanisms of trioma-mediated tumor immunity in immunocompetent mice were dissected, and it was shown in this model system that humoral anti-idiotypic immunity is indeed detectable after idiotype-specific immunization but that it does not reflect the degree of tumor protection obtained in vivo. Immunization against the idiotype alone was not sufficient for efficient tumor rejection in vivo. Targeting tumor antigens to APCs is only successful in terms of inducing tumor protection when designed as a polyvalent vaccination protocol.


2019 ◽  
Vol 5 (10) ◽  
pp. eaaw6870 ◽  
Author(s):  
Xiao Han ◽  
Shufang Shen ◽  
Qin Fan ◽  
Guojun Chen ◽  
Edikan Archibong ◽  
...  

Erythrocytes or red blood cells (RBCs) represent a promising cell-mediated drug delivery platform due to their inherent biocompatibility. Here, we developed an antigen delivery system based on the nanoerythrosomes derived from RBCs, inspired by the splenic antigen-presenting cell targeting capacity of senescent RBCs. Tumor antigens were loaded onto the nanoerythrosomes by fusing tumor cell membrane–associated antigens with nanoerythrosomes. This tumor antigen–loaded nanoerythrosomes (nano-Ag@erythrosome) elicited antigen responses in vivo and, in combination with the anti–programmed death ligand 1 (PD-L1) blockade, inhibited the tumor growth in B16F10 and 4T1 tumor models. We also generated a tumor model showing that “personalized nano-Ag@erythrosomes” could be achieved by fusing RBCs and surgically removed tumors, which effectively reduced tumor recurrence and metastasis after surgery.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Kirsi Tamminen ◽  
Suvi Heinimäki ◽  
Timo Vesikari ◽  
Vesna Blazevic

We have previously shown that rotavirus (RV) inner capsid protein VP6 has an adjuvant effect on norovirus (NoV) virus-like particle- (VLP-) induced immune responses and studied the adjuvant mechanism in immortalized cell lines used as antigen-presenting cells (APCs). Here, we investigated the uptake and presentation of RV VP6 and NoV GII.4 VLPs by primary bone marrow-derived dendritic cells (BMDCs). The adjuvant effect of VP6 on GII.4 VLP presentation and NoV-specific immune response induction by BMDC in vivo was also studied. Intracellular staining demonstrated that BMDCs internalized both antigens, but VP6 more efficiently than NoV VLPs. Both antigens were processed and presented to antigen-primed T cells, which responded by robust interferon γ secretion. When GII.4 VLPs and VP6 were mixed in the same pulsing reaction, a subpopulation of the cells had uptaken both antigens. Furthermore, VP6 copulsing increased GII.4 VLP uptake by 37% and activated BMDCs to secrete 2-5-fold increased levels of interleukin 6 and tumor necrosis factor α compared to VLP pulsing alone. When in vitro-pulsed BMDCs were transferred to syngeneic BALB/c mice, VP6 improved NoV-specific antibody responses. The results of this study support the earlier findings of VP6 adjuvant effect in vitro and in vivo.


1999 ◽  
Vol 90 (6) ◽  
pp. 1115-1124 ◽  
Author(s):  
Linda M. Liau ◽  
Keith L. Black ◽  
Robert M. Prins ◽  
Steven N. Sykes ◽  
Pier-Luigi DiPatre ◽  
...  

Object. An approach toward the treatment of intracranial gliomas was developed in a rat experimental model. The authors investigated the ability of “professional” antigen-presenting cells (dendritic cells) to enhance host antitumor immune responses when injected as a vaccine into tumor-bearing animals.Methods. Dendritic cells, the most potent antigen-presenting cells in the body, were isolated from rat bone marrow precursors stimulated in vitro with granulocyte—macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Cultured cell populations were confirmed to be functional antigen-presenting cells on the basis of expressed major histocompatibility molecules, as analyzed by fluorescence-activated cell sorter cytofluorography. These dendritic cells were then pulsed (cocultured) ex vivo with acid-eluted tumor antigens from 9L glioma cells. Thirty-eight adult female Fischer 344 rats harboring 7-day-old intracranial 9L tumors were treated with three weekly subcutaneous injections of either control media (10 animals), unpulsed dendritic cells (six animals), dendritic cells pulsed with peptides extracted from normal rat astrocytes (10 animals), or 9L tumor antigen—pulsed dendritic cells (12 animals). The animals were followed for survival. At necropsy, the rat brains were removed and examined histologically, and spleens were harvested for cell-mediated cytotoxicity assays.The results indicate that tumor peptide-pulsed dendritic cell therapy led to prolonged survival in rats with established intracranial 9L tumors implanted 7 days prior to the initiation of vaccine therapy in vivo. Immunohistochemical analyses were used to document a significantly increased perilesional and intratumoral infiltration of CD8+ and CD4+ T cells in the groups treated with tumor antigen—pulsed dendritic cells compared with the control groups. In addition, the results of in vitro cytotoxicity assays suggest that vaccination with these peptide-pulsed dendritic cells can induce specific cytotoxic T lymphocytes against 9L tumor cells.Conclusions. Based on these results, dendritic antigen-presenting cells pulsed with acid-eluted peptides derived from autologous tumors represent a promising approach to the immunotherapy of established intracranial gliomas, which may serve as a basis for designing clinical trials in patients with brain tumors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3808-3808
Author(s):  
Zhen Cai ◽  
Wenye Huang ◽  
Wenji Sun

Abstract Mycophenolate mofetil (MMF) is a newly developed immunosuppressor, currently widely used in allogeneic bone marrow transplantation. Its active metabolite, mycophenolic acid (MPA) is a noncompetitive, reversible inhibitor of the enzyme inosine 59-monophosphate dehydrogenase, which plays a major role in the de novo synthesis of guanosine nucleotides. Unlike other cells that also use the salvage pathway for purine biosynthesis, proliferating B and T cells are dependent on the de novo pathway generate guanosine. Thus, MMF exerts its immunosuppressive effects of lymphocyte proliferation. Recently, some studies found that MPA could inhibit the immun immune function of antigen presenting cells. Dendritic cells (DCs), the most potent antigen presenting cells with the unique ability to prime naive T cells, play a central role in antigen processing and presentation to induce T cell response in vitro and in vivo. This study is to evaluate the effects of MPA, the in vivo active metabolite of MMF, on the maturation and immune function of murine bone marrow-derived dendritic cells, and to explore the underlying mechanisms of MMF in graft versus host disease. Bone marrow-derived dendritic cells (DC) were cultured with GM-CSF and IL-4 in the presence of MPA at doses of 0.01 and 0.1μmol/L. The ability of the allostimulatory activities of the DCs on allogeneic T cells was assessed by MLR. IL-12 production in culture supernatant and the Th1/Th2 cytokines such as IL-2, IFN-g, IL-4 and IL-10 levels in mixed lymphocyte reaction (MLR) supernatant were examined by ELISA assays. The activity of NF-κB in DCs was measured with Western blot assays. Our results showed that DCs cultured in the presence of MPA expressed lower levels of CD40, CD80 and CD86, exhibited weaker activity of stimulating the allogeneic T cell proliferation and weaker in antigen presenting function with a concurrent reduction of IL-12 production. MPA-treated DCs stimulated allogeneic T cells to secrete higher levels of Th2 cytokines IL-4 and IL-10 but lower levels of Th1 cytokines IL-2 and IFN-g than did DCs not treated with MPA. The activity of NF-κB was decreased in DCs treated with MPA in a dose-dependent manner. We conclude that MPA, and hence MMF, exerts a negative effect on the maturation and immune function of in vitro cultured DCs, and drives a shift of Th1 cytokines to Th2 cytokines in MLR. This negative effect is associated with a decrease in NF-κB activity. Say something about the significance of this finding regarding GVHD.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 952-962 ◽  
Author(s):  
Stéphane Pion ◽  
Gregory J. Christianson ◽  
Pierre Fontaine ◽  
Derry C. Roopenian ◽  
Claude Perreault

The immunodominance effect, whereby the presence of immunodominant epitopes prevents recognition of nondominant determinants presented on the same antigen-presenting cell (APC) considerably restricts the repertoire of cytotoxic T lymphocyte (CTL) responses. To elucidate the molecular basis of the immunodominance effect, we compared the interactions of a dominant (B6dom1) and a nondominant epitope (H-Y) with their restricting class I molecule (H2-Db), and their ability to trigger cognate CTLs. We found that B6dom1/Db complexes behaved as optimal T-cell receptor (TCR) ligands and triggered a more rapid in vivo expansion of cognate CTLs than H-Y/Db complexes. The superiority of the dominant epitope was explained by its high cell surface density (1,012 copies/cell for B6dom1v 10 copies/cell for H-Y) and its optimal affinity for cognate TCRs. Based on these results, we conclude that dominant class I–associated epitopes are those that have optimal ability to trigger TCR signals in CTLs. We propose that the rapid expansion of CTLs specific for dominant antigens should enable them to compete more successfully than other CTLs for occupancy of the APC surface.


2004 ◽  
Vol 78 (23) ◽  
pp. 13062-13071 ◽  
Author(s):  
Andrea Loewendorf ◽  
Corinna Krüger ◽  
Eva Maria Borst ◽  
Markus Wagner ◽  
Ursula Just ◽  
...  

ABSTRACT We and others have shown that infection of dendritic cells with murine cytomegalovirus (MCMV) leads to severe functional impairment of these antigen-presenting cells (D. M. Andrews, C. E. Andoniou, F. Granucci, P. Ricciardi-Castagnoli, and M. A. Degli-Esposti, Nat. Immunol. 2:1077-1084, 2001; S. Mathys, T. Schroeder, J. Ellwart, U. H. Koszinowski, M. Messerle, and U. Just, J. Infect. Dis. 187:988-999, 2003). Phenotypically, reduced surface expression of costimulatory molecules and major histocompatibility complex molecules was detected. In order to identify the molecular basis for the observed effects, we generated MCMV mutants with large deletions of nonessential genes. The study was facilitated by the finding that a monocyte-macrophage cell line displayed similar phenotypic alterations after MCMV infection. By analyzing the expression of cell surface molecules on infected cells, we identified a mutant virus which is no longer able to downmodulate the expression of the costimulatory molecule CD86. Additional mutants with smaller deletions allowed us to pin down the responsible gene to a certain genomic region. RNA analysis led to the identification of the spliced gene m147.5, encoding a protein with 145 amino acids. Experiments with an m147.5 mutant revealed that the protein affects CD86 expression only, suggesting that additional MCMV genes are responsible for downmodulation of the other surface molecules. Identification of viral gene products interfering with functionally important proteins of antigen-presenting cells will provide the basis to dissect the complex interaction of CMV with these important cells and to evaluate the biological importance of these viral genes in vivo.


2000 ◽  
Vol 192 (8) ◽  
pp. 1143-1150 ◽  
Author(s):  
Luis J. Sigal ◽  
Kenneth L. Rock

Bone marrow (BM)-derived professional antigen-presenting cells (pAPCs) are required for the generation of cytotoxic T lymphocyte (CTL) responses to vaccinia virus and poliovirus. Furthermore, these BM-derived pAPCs require a functional transporter associated with antigen presentation (TAP). In this report we analyze the requirements for BM-derived pAPCs and TAP in the initiation of CTL responses to lymphocytic choriomeningitis virus (LCMV) and influenza virus (Flu). Our results indicate a requirement for BM-derived pAPCs for the CTL responses to these viruses. However, we found that the generation of CTLs to one LCMV epitope (LCMV nucleoprotein 396–404) was dependent on BM-derived pAPCs but, surprisingly, TAP independent. The study of the CTL response to Flu confirmed the existence of this BM-derived pAPC-dependent/TAP-independent CTL response and indicated that the TAP-independent pathway is ∼10–300-fold less efficient than the TAP-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document