scholarly journals Requirement of Fas for the Development of Autoimmune Diabetes in Nonobese Diabetic Mice

1997 ◽  
Vol 186 (4) ◽  
pp. 613-618 ◽  
Author(s):  
Naoto Itoh ◽  
Akihisa Imagawa ◽  
Toshiaki Hanafusa ◽  
Masako Waguri ◽  
Koji Yamamoto ◽  
...  

Insulin-dependent diabetes mellitus (IDDM) is assumed to be a T cell–mediated autoimmune disease. To investigate the role of Fas-mediated cytotoxicity in pancreatic β cell destruction, we established nonobese diabetic (NOD)-lymphoproliferation (lpr)/lpr mice lacking Fas. Out of three genotypes, female NOD-+/+ and NOD-+/lpr developed spontaneous diabetes by the age of 10 mo with the incidence of 68 and 62%, respectively. In contrast, NOD-lpr/lpr did not develop diabetes or insulitis. To further explore the role of Fas, adoptive transfer experiments were performed. When splenocytes were transferred from diabetic NOD, male NOD-+/+ and NOD-+/lpr developed diabetes with the incidence of 89 and 83%, respectively, whereas NOD-lpr/lpr did not show glycosuria by 12 wk after transfer. Severe mononuclear cell infiltration was revealed in islets of NOD-+/+ and NOD-+/lpr, whereas islet morphology remained intact in NOD-lpr/lpr. These results suggest that Fas-mediated cytotoxicity is required to initiate β cell autoimmunity in NOD mice. Fas–Fas ligand system might be critical for autoimmune β cell destruction leading to IDDM.

2001 ◽  
Vol 194 (3) ◽  
pp. 313-320 ◽  
Author(s):  
Bin Wang ◽  
Yan-Biao Geng ◽  
Chyung-Ru Wang

NK T cells are a unique subset of T cells that recognize lipid antigens presented by CD1d. After activation, NK T cells promptly produce large amounts of cytokines, which may modulate the upcoming immune responses. Previous studies have documented an association between decreased numbers of NK T cells and the progression of some autoimmune diseases, suggesting that NK T cells may control the development of autoimmune diseases. To investigate the role of NK T cells in autoimmune diabetes, we crossed CD1 knockout (CD1KO) mutation onto the nonobese diabetic (NOD) genetic background. We found that male CD1KO NOD mice exhibited significantly higher incidence and earlier onset of diabetes compared with the heterozygous controls. The diabetic frequencies in female mice showed a similar pattern; however, the differences were less profound between female CD1KO and control mice. Early treatment of NOD mice with α-galactosylceramide, a potent NK T cell activator, reduced the severity of autoimmune diabetes in a CD1-dependent manner. Our results not only suggest a protective role of CD1-restricted NK T cells in autoimmune diabetes but also reveal a causative link between the deficiency of NK T cells and the induction of insulin-dependent diabetes mellitus.


1989 ◽  
Vol 169 (5) ◽  
pp. 1669-1680 ◽  
Author(s):  
C Boitard ◽  
R Yasunami ◽  
M Dardenne ◽  
J F Bach

The nonobese diabetic (NOD) mouse has recently been introduced as a model for insulin-dependent diabetes mellitus. The role of regulatory T cells in the development of antipancreatic autoimmunity in this model remains unclear. To evaluate the presence of suppressive phenomena, we used disease transfer by spleen cells from diabetic NOD mice into preirradiated adult recipients as a model for accelerated disease. Suppressor phenomena were detected by testing the protection afforded by lymphoid cells from nondiabetic NOD mice against diabetes transfer in irradiated recipients. Transfer of diabetes was delayed by reconstituting recipients with spleen cells from nondiabetic NOD donors. The greatest protection against diabetes transfer was conferred by spleen cells from 8-wk-old nondiabetic female NOD mice. Depletion experiments showed that the protection was dependent on CD4+ cells. Protection was also detected within thymic cells from nondiabetic NOD mice and protection conferred by spleen cells was abrogated by thymectomy of nondiabetic female, but not male, NOD donors at 3 wk of age. These findings indicate that suppressive CD4+ T cells that are dependent on the presence of the thymus may delay the onset of diabetes in female diabetes-prone NOD mice.


2001 ◽  
Vol 193 (11) ◽  
pp. 1327-1332 ◽  
Author(s):  
Qiang Wu ◽  
Benoît Salomon ◽  
Min Chen ◽  
Yang Wang ◽  
Lisa M. Hoffman ◽  
...  

One striking feature of spontaneous autoimmune diabetes is the prototypic formation of lymphoid follicular structures within the pancreas. Lymphotoxin (LT) has been shown to play an important role in the formation of lymphoid follicles in the spleen. To explore the potential role of LT-mediated microenvironment in the pathogenesis of insulin-dependent diabetes mellitus (IDDM), an LTβ receptor–immunoglobulin fusion protein (LTβR–Ig) was administered to nonobese diabetic mice. Early treatment with LTβR–Ig prevented insulitis and IDDM, suggesting that LT plays a critical role in the insulitis development. LTβR–Ig treatment at a late stage of the disease also dramatically reversed insulitis and prevented diabetes. Moreover, LTβR–Ig treatment prevented the development of IDDM by diabetogenic T cells in an adoptive transfer model. Thus, LTβR–Ig can disassemble the well established lymphoid microenvironment in the islets, which is required for the development and progression of IDDM.


2006 ◽  
Vol 958 (1) ◽  
pp. 204-208 ◽  
Author(s):  
N. PETROVSKY ◽  
D. SILVA ◽  
L. SOCHA ◽  
R. SLATTERY ◽  
B. CHARLTON

1994 ◽  
Vol 179 (4) ◽  
pp. 1379-1384 ◽  
Author(s):  
L Wogensen ◽  
M S Lee ◽  
N Sarvetnick

The T helper type 2 (Th2) cell product interleukin 10 (IL-10) inhibits the proliferation and function of Th1 lymphocytes and macrophages (M phi). The nonobese diabetic mouse strain (NOD/Shi) develops a M phi and T cell-dependent autoimmune diabetes that closely resembles human insulin-dependent diabetes mellitus (IDDM). The objective of the present study was to explore the consequences of localized production of IL-10 on diabetes development in NOD/Shi mice. Surprisingly, local production of IL-10 accelerated the onset and increased the prevalence of diabetes, since diabetes developed at 5-10 wk of age in 92% of IL-10 positive I-A beta g7/g7, I-E- mice in first (N2) and second (N3) generation backcrosses between IL-10 transgenic BALB/c mice and (NOD/Shi) mice. None of the IL-10 negative major histocompatibility complex-identical littermates were diabetic at this age. Furthermore, diabetes developed in 33% of I-A beta g7/d, I-E+ N3 mice in the presence of IL-10 before the mice were 10 wk old. Our findings support the notion that IL-10 should not simply be regarded as an immunoinhibitory cytokine, since it possesses powerful, immunostimulatory properties as well. Furthermore, our observations suggest that beta cell destruction in NOD mice may be a Th2-mediated event.


2021 ◽  
Vol 12 ◽  
Author(s):  
Deepika Watts ◽  
Marthe Janßen ◽  
Mangesh Jaykar ◽  
Francesco Palmucci ◽  
Marc Weigelt ◽  
...  

Type 1 diabetes (T1D) represents a hallmark of the fatal multiorgan autoimmune syndrome affecting humans with abrogated Foxp3+ regulatory T (Treg) cell function due to Foxp3 gene mutations, but whether the loss of Foxp3+ Treg cell activity is indeed sufficient to promote β cell autoimmunity requires further scrutiny. As opposed to human Treg cell deficiency, β cell autoimmunity has not been observed in non-autoimmune-prone mice with constitutive Foxp3 deficiency or after diphtheria toxin receptor (DTR)-mediated ablation of Foxp3+ Treg cells. In the spontaneous nonobese diabetic (NOD) mouse model of T1D, constitutive Foxp3 deficiency did not result in invasive insulitis and hyperglycemia, and previous studies on Foxp3+ Treg cell ablation focused on Foxp3DTR NOD mice, in which expression of a transgenic BDC2.5 T cell receptor (TCR) restricted the CD4+ TCR repertoire to a single diabetogenic specificity. Here we revisited the effect of acute Foxp3+ Treg cell ablation on β cell autoimmunity in NOD mice in the context of a polyclonal TCR repertoire. For this, we took advantage of the well-established DTR/GFP transgene of DEREG mice, which allows for specific ablation of Foxp3+ Treg cells without promoting catastrophic autoimmune diseases. We show that the transient loss of Foxp3+ Treg cells in prediabetic NOD.DEREG mice is sufficient to precipitate severe insulitis and persistent hyperglycemia within 5 days after DT administration. Importantly, DT-treated NOD.DEREG mice preserved many clinical features of spontaneous diabetes progression in the NOD model, including a prominent role of diabetogenic CD8+ T cells in terminal β cell destruction. Despite the severity of destructive β cell autoimmunity, anti-CD3 mAb therapy of DT-treated mice interfered with the progression to overt diabetes, indicating that the novel NOD.DEREG model can be exploited for preclinical studies on T1D under experimental conditions of synchronized, advanced β cell autoimmunity. Overall, our studies highlight the continuous requirement of Foxp3+ Treg cell activity for the control of genetically pre-installed autoimmune diabetes.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Manal Alkan ◽  
François Machavoine ◽  
Rachel Rignault ◽  
Julie Dam ◽  
Michel Dy ◽  
...  

Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/−mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γin HDC−/−mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/−mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.


1997 ◽  
Vol 186 (7) ◽  
pp. 989-997 ◽  
Author(s):  
David Kägi ◽  
Bernhard Odermatt ◽  
Peter Seiler ◽  
Rolf M. Zinkernagel ◽  
Tak W. Mak ◽  
...  

To investigate the role of T cell–mediated, perforin-dependent cytotoxicity in autoimmune diabetes, perforin-deficient mice were backcrossed with the nonobese diabetes mouse strain. It was found that the incidence of spontaneous diabetes over a 1 yr period was reduced from 77% in perforin +/+ control to 16% in perforin-deficient mice. Also, the disease onset was markedly delayed (median onset of 39.5 versus 19 wk) in the latter. Insulitis with infiltration of CD4+ and CD8+ T cells occurred similarly in both groups of animals. Lower incidence and delayed disease onset were also evident in perforin-deficient mice when diabetes was induced by cyclophosphamide injection. Thus, perforin-dependent cytotoxicity is a crucial effector mechanism for β cell elimination by cytotoxic T cells in autoimmune diabetes. However, in the absence of perforin chronic inflammation of the islets can lead to diabetogenic β cell loss by less efficient secondary effector mechanisms.


1995 ◽  
Vol 181 (3) ◽  
pp. 1145-1155 ◽  
Author(s):  
D J Lenschow ◽  
S C Ho ◽  
H Sattar ◽  
L Rhee ◽  
G Gray ◽  
...  

Insulin-dependent diabetes mellitus (IDDM) is thought to be an immunologically mediated disease resulting in the complete destruction of the insulin-producing islets of Langerhans. It has become increasingly clear that autoreactive T cells play a major role in the development and progression of this disease. In this study, we examined the role of the CD28/B7 costimulation pathway in the development and progression of autoimmune diabetes in the nonobese diabetic (NOD) mouse model. Female NOD mice treated at the onset of insulitis (2-4 wk of age) with CTLA4Ig immunoglobulin (Ig) (a soluble CD28 antagonist) or a monoclonal antibody (mAb) specific for B7-2 (a CD28 ligand) did not develop diabetes. However, neither of these treatments altered the disease process when administered late, at > 10 wk of age. Histological examination of islets from the various treatment groups showed that while CTLA4Ig and anti-B7-2 mAb treatment blocked the development of diabetes, these reagents had little effect on the development or severity of insulitis. Together these results suggest that blockade of costimulatory signals by CTLA4Ig or anti-B7-2 acts early in disease development, after insulitis but before the onset of frank diabetes. NOD mice were also treated with mAbs to another CD28 ligand, B7-1. In contrast to the previous results, the anti-B7-1 treatment significantly accelerated the development of disease in female mice and, most interestingly, induced diabetes in normally resistant male mice. A combination of anti-B7-1 and anti-B7-2 mAbs also resulted in an accelerated onset of diabetes, similar to that observed with anti-B7-1 mAb treatment alone, suggesting that anti-B7-1 mAb's effect was dominant. Furthermore, treatment with anti-B7-1 mAbs resulted in a more rapid and severe infiltrate. Finally, T cells isolated from the pancreas of these anti-B7-1-treated animals exhibited a more activated phenotype than T cells isolated from any of the other treatment groups. These studies demonstrate that costimulatory signals play an important role in the autoimmune process, and that different members of the B7 family have distinct regulatory functions during the development of autoimmune diabetes.


Sign in / Sign up

Export Citation Format

Share Document