scholarly journals Interferon Consensus Sequence Binding Protein–deficient Mice Display Impaired Resistance to Intracellular Infection Due to a Primary Defect in Interleukin 12 p40 Induction

1997 ◽  
Vol 186 (9) ◽  
pp. 1523-1534 ◽  
Author(s):  
Tanya Scharton-Kersten ◽  
Cristina Contursi ◽  
Atsuko Masumi ◽  
Alan Sher ◽  
Keiko Ozato

Mice lacking the transcription factor interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor family of transcription proteins, were infected with the intracellular protozoan, Toxoplasma gondii. ICSBP-deficient mice exhibited unchecked parasite replication in vivo and rapidly succumbed within 14 d after inoculation with an avirulent Toxoplasma strain. In contrast, few intracellular parasites were observed in wild-type littermates and these animals survived for at least 60 d after infection. Analysis of cytokine synthesis in vitro and in vivo revealed a major deficiency in the expression of both interferon (IFN)-γ and interleukin (IL)-12 p40 in the T. gondii exposed ICSBP−/− animals. In related experiments, macrophages from uninfected ICSBP−/− mice were shown to display a selective impairment in the mRNA expression of IL-12 p40 but not IL-1α, IL-1β, IL-1Ra, IL-6, IL-10, or TNF-α in response to live parasites, parasite antigen, lipopolysaccharide, or Staphylococcus aureus. This selective defect in IL-12 p40 production was observed regardless of whether the macrophages had been primed with IFN-γ. We hypothesize that the impaired synthesis of IL-12 p40 in ICSBP−/− animals is the primary lesion responsible for the loss in resistance to T. gondii because IFN-γ–induced parasite killing was unimpaired in vitro and, more importantly, administration of exogenous IL-12 in vivo significantly prolonged survival of the infected mice. Together these findings implicate ICSBP as a major transcription factor which directly or indirectly regulates IL-12 p40 gene activation and, as a consequence, IFN-γ–dependent host resistance.

1997 ◽  
Vol 185 (5) ◽  
pp. 921-932 ◽  
Author(s):  
Thomas Fehr ◽  
Gabriele Schoedon ◽  
Bernhard Odermatt ◽  
Thomas Holtschke ◽  
Markus Schneemann ◽  
...  

Listeria monocytogenes is widely used as a model to study immune responses against intracellular bacteria. It has been shown that neutrophils and macrophages play an important role to restrict bacterial replication in the early phase of primary infection in mice, and that the cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) are essential for protection. However, the involved signaling pathways and effector mechanisms are still poorly understood. This study investigated mouse strains deficient for the IFN-dependent transcription factors interferon consensus sequence binding protein (ICSBP), interferon regulatory factor (IRF)1 or 2 for their capacity to eliminate Listeria in vivo and in vitro and for production of inducible reactive nitrogen intermediates (RNI) or reactive oxygen intermediates (ROI) in macrophages. ICSBP−/− and to a lesser degree also IRF2−/− mice were highly susceptible to Listeria infection. This correlated with impaired elimination of Listeria from infected peritoneal macrophage (PEM) cultures stimulated with IFN-γ in vitro; in addition these cultures showed reduced and delayed oxidative burst upon IFN-γ stimulation, whereas nitric oxide production was normal. In contrast, mice deficient for IRF1 were not able to produce nitric oxide, but they efficiently controlled Listeria in vivo and in vitro. These results indicate that (a) the ICSBP/IRF2 complex is essential for IFN-γ–mediated protection against Listeria and that (b) ROI together with additional still unknown effector mechanisms may be responsible for the anti-Listeria activity of macrophages, whereas IRF1-induced RNI are not limiting.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Manuel Schmidt ◽  
Stefan Nagel ◽  
Jutta Proba ◽  
Christian Thiede ◽  
Markus Ritter ◽  
...  

Interferon consensus sequence binding protein (ICSBP) was first identified as a transcription factor of the interferon (IFN) regulatory factor family (IRF) which regulates expression of IFN-dependent genes by binding to DNA at specific sites, IFN-stimulated responsive elements. Analysis of ICSBP-deficient mice showed hematologic alterations similar to chronic myelogenous leukemia (CML) in humans and suggested a novel role for ICSBP in regulating proliferation and differentiation of hematopoietic progenitor cells. Here we show that ICSBP-mRNA expression is impaired in human myeloid leukemias: 27 of 34 CML patients (79%) and 21 of 32 patients with acute myeloid leukemia (AML) (66%) showed very low or absent transcript numbers of ICSBP. In contrast, only 2 of 33 normal volunteers (6%) showed low transcription of ICSBP(P < .0001 both for CML and AML values). The lack of expression was not associated with lack of lymphatic cells, which normally have been shown to express ICSBP at the highest level. More detailed analysis showed an absence of ICSBP-mRNA also in sorted B cells derived from CML patients. To analyze whetherICSBP may be induced in leukemic cells, ex vivoexperiments using a known inducer of ICSBP, IFN-γ, were performed. Ex vivo treatment of primary CML cells using IFN-γ resulted in induction of ICSBP transcripts. Furthermore, samples of CML patients during IFN-α treatment were analyzed. In 11 of 12 CML patients ICSBP-mRNA was inducible upon in vivo treatment with IFN-α, but decreased with progression of CML. Stable transfection of K-562 cell line with ICSBP led to no difference in bcr-abl expression in vitro, although two patients showed an inverse correlation between bcr-abl andICSBP in vivo. These data suggest that lack of ICSBPmay have an important role also in human myeloid leukemogenesis.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Manuel Schmidt ◽  
Stefan Nagel ◽  
Jutta Proba ◽  
Christian Thiede ◽  
Markus Ritter ◽  
...  

Abstract Interferon consensus sequence binding protein (ICSBP) was first identified as a transcription factor of the interferon (IFN) regulatory factor family (IRF) which regulates expression of IFN-dependent genes by binding to DNA at specific sites, IFN-stimulated responsive elements. Analysis of ICSBP-deficient mice showed hematologic alterations similar to chronic myelogenous leukemia (CML) in humans and suggested a novel role for ICSBP in regulating proliferation and differentiation of hematopoietic progenitor cells. Here we show that ICSBP-mRNA expression is impaired in human myeloid leukemias: 27 of 34 CML patients (79%) and 21 of 32 patients with acute myeloid leukemia (AML) (66%) showed very low or absent transcript numbers of ICSBP. In contrast, only 2 of 33 normal volunteers (6%) showed low transcription of ICSBP(P < .0001 both for CML and AML values). The lack of expression was not associated with lack of lymphatic cells, which normally have been shown to express ICSBP at the highest level. More detailed analysis showed an absence of ICSBP-mRNA also in sorted B cells derived from CML patients. To analyze whetherICSBP may be induced in leukemic cells, ex vivoexperiments using a known inducer of ICSBP, IFN-γ, were performed. Ex vivo treatment of primary CML cells using IFN-γ resulted in induction of ICSBP transcripts. Furthermore, samples of CML patients during IFN-α treatment were analyzed. In 11 of 12 CML patients ICSBP-mRNA was inducible upon in vivo treatment with IFN-α, but decreased with progression of CML. Stable transfection of K-562 cell line with ICSBP led to no difference in bcr-abl expression in vitro, although two patients showed an inverse correlation between bcr-abl andICSBP in vivo. These data suggest that lack of ICSBPmay have an important role also in human myeloid leukemogenesis.


1997 ◽  
Vol 186 (9) ◽  
pp. 1535-1546 ◽  
Author(s):  
Nathalia A. Giese ◽  
Lucia Gabriele ◽  
T. Mark Doherty ◽  
Dennis M. Klinman ◽  
Lekidelu Tadesse-Heath ◽  
...  

Mice with a null mutation of the gene encoding interferon consensus sequence-binding protein (ICSBP) develop a chronic myelogenous leukemia-like syndrome and mount impaired responses to certain viral and bacterial infections. To gain a mechanistic understanding of the contributions of ICSBP to humoral and cellular immunity, we characterized the responses of control and ICSBP−/− mice to infection with influenza A (flu) and Leishmania major (L. major). Mice of both genotypes survived infections with flu, but differed markedly in the isotype distribution of antiflu antibodies. In sera of normal mice, immunoglobulin (Ig)G2a antibodies were dominant over IgG1 antibodies, a pattern indicative of a T helper cell type 1 (Th1)-driven response. In sera of ICSBP−/− mice, however, IgG1 antibodies dominated over IgG2a antibodies, a pattern indicative of a Th2-driven response. The dominance of IgG1 and IgE over IgG2a was detected in the sera of uninfected mice as well. A seeming Th2 bias of ICSBP-deficient mice was also uncovered in their inability to control infection with L. major, where resistance is known to be dependent on IL-12 and IFN-γ as components of a Th1 response. Infected ICSBP-deficient mice developed fulminant, disseminated leishmaniasis as a result of failure to mount a Th1-mediated curative response, although T cells remained capable of secreting IFN-γ and macrophages of producing nitric oxide. Compromised Th1 differentiation in ICSBP−/− mice could not be attributed to hyporesponsiveness of CD4+ T cells to interleukin (IL)-12; however, the ability of uninfected and infected ICSBP-deficient mice to produce IL-12 was markedly impaired. This indicates that ICSBP is a deciding factor in Th responses governing humoral and cellular immunity through its role in regulating IL-12 expression.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


2007 ◽  
Vol 75 (11) ◽  
pp. 5338-5345 ◽  
Author(s):  
Kee-Jong Hong ◽  
Jason R. Wickstrum ◽  
Hung-Wen Yeh ◽  
Michael J. Parmely

ABSTRACT The production of gamma interferon (IFN-γ) is a key step in the protective innate immune response to Francisella tularensis. Natural killer cells and T cells in the liver are important sources of this cytokine during primary F. tularensis infections, and interleukin-12 (IL-12) appears to be an essential coactivating cytokine for hepatic IFN-γ expression. The present study was undertaken to determine whether or not macrophages (Mφ) or dendritic cells (DC) provide coactivating signals for the liver IFN-γ response in vitro, whether IL-12 mediates these effects, and whether Toll-like receptor (TLR) signaling is essential to induce this costimulatory activity. Both bone marrow-derived Mφ and DC significantly augmented the IFN-γ response of F. tularensis-challenged liver lymphocytes in vitro. While both cell types produced IL-12p40 in response to F. tularensis challenge, only DC secreted large quantities of IL-12p70. DC from both IL-12p35-deficient and TLR2-deficient mice failed to produce IL-12p70 and did not costimulate liver lymphocytes for IFN-γ production in response to viable F. tularensis organisms. Conversely, liver lymphocytes from TLR2-deficient mice cocultured with wild-type accessory cells produced IFN-γ at levels comparable to those for wild-type hepatic lymphocytes. These findings indicate that TLR2 controls hepatic lymphocyte IFN-γ responses to F. tularensis by regulating DC IL-12 production. While Mφ also coinduced hepatic IFN-γ production in response to F. tularensis, they did so in a fashion less dependent on TLR2.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
Lei Yao ◽  
Cecilia Sgadari ◽  
Keizo Furuke ◽  
Eda T. Bloom ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Interleukin-12 (IL-12) inhibits angiogenesis in vivo by inducing interferon-γ (IFN-γ) and other downstream mediators. Here, we report that neutralization of natural killer (NK) cell function with antibodies to either asialo GM1 or NK 1.1 reversed IL-12 inhibition of basic fibroblast growth factor (bFGF)-induced angiogenesis in athymic mice. By immunohistochemistry, those sites where bFGF-induced neovascularization was inhibited by IL-12 displayed accumulation of NK cells and the presence of IP-10–positive cells. Based on expression of the cytolytic mediators perforin and granzyme B, the NK cells were locally activated. Experimental Burkitt lymphomas treated locally with IL-12 displayed tumor tissue necrosis, vascular damage, and NK-cell infiltration surrounding small vessels. After activation in vitro with IL-12, NK cells from nude mice became strongly cytotoxic for primary cultures of syngeneic aortic endothelial cells. Cytotoxicity was neutralized by antibodies to IFN-γ. These results document that NK cells are required mediators of angiogenesis inhibition by IL-12, and provide evidence that NK-cell cytotoxicity of endothelial cells is a potential mechanism by which IL-12 can suppress neovascularization.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 961-969 ◽  
Author(s):  
Hideki Tsujimura ◽  
Tomohiko Tamura ◽  
Celine Gongora ◽  
Julio Aliberti ◽  
Caetano Reis e Sousa ◽  
...  

Abstract Dendritic cells (DCs) develop from bone marrow (BM) progenitor cells and mature in response to external signals to elicit functions important for innate and adaptive immunity. Interferon consensus sequence binding protein (ICSBP; also called interferon regulatory factor 8 [IRF-8]) is a hematopoietic cell–specific transcription factor expressed in BM progenitor cells that contributes to myeloid cell development. In light of our earlier observation that ICSBP−/− mice lack CD8α+DCs, we investigated the role of ICSBP in DC development in vitro in the presence of Flt3 ligand. Immature ICSBP−/− DCs developed from BM progenitor cells showed assorted defects, did not mature in response to activation signals, and failed to express CD8α and interleukin 12 (IL-12) p40, a feature consistent with ICSBP−/− DCs in vivo. We show that retroviral introduction of ICSBP restores the development of immature DCs that can fully mature on activation signals. All the defects seen with ICSBP−/− DCs were corrected after ICSBP transduction, including the expression of CD8α and IL-12 p40 as well as major histocompatability complex class II and other costimulatory molecules. ICSBP is known to regulate gene expression by interacting with partner proteins PU.1 and IRFs, thereby binding to target elements ISRE and EICE. Analysis of a series of ICSBP mutants showed that the intact DNA-binding activity as well as the ability to interact with partner proteins are required for the restoration of DC development/maturation, pointing to the transcriptional function of ICSBP as a basis of restoration. Taken together, this study identifies ICSBP as a factor critical for both early differentiation and final maturation of DCs.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


2000 ◽  
Vol 99 (5) ◽  
pp. 421-431 ◽  
Author(s):  
Masayoshi YAMASHIKI ◽  
Akihito MASE ◽  
Ichiro ARAI ◽  
Xian-Xi HUANG ◽  
Tsutomu NOBORI ◽  
...  

Inchinko-to (TJ-135) is a herbal medicine consisting of three kinds of crude drugs, and in Japan it is administered mainly to patients with cholestasis. The present study evaluated the effects of TJ-135 on concanavalin A (con A)-induced hepatitis in mice in vivo and con A-induced cytokine production in vitro. When mice were pretreated with oral TJ-135 for 1 week before intravenous con A injection, the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were significantly decreased 8 h after con A administration (-82%, -96% and -66% respectively). In histological investigations, sub-massive hepatic necrosis accompanying inflammatory cell infiltration was not observed in mice pretreated with TJ-135. Serum levels of interleukin-12 (IL-12), interferon-γ (IFN-γ) and IL-2 were significantly lower in mice pretreated with TJ-135 compared with controls, while IL-10 levels were higher in these mice. Intrasplenic IL-12 levels were significantly lower in mice pretreated with TJ-135, while intrasplenic IL-10 levels were higher in these mice. In vitro, IL-10 production by splenocytes was increased by the addition of TJ-135 to the culture medium, whereas the production of IL-12 and IFN-γ was inhibited. These results suggest that con A-induced hepatitis was ameliorated by pretreatment with TJ-135. With regard to the mechanism of these effects of TJ-135, we speculate that TJ-135 inhibits the production of inflammatory cytokine and enhances the production of anti-inflammatory cytokines. Therefore administration of TJ-135 may be useful in patients with severe acute hepatitis accompanying cholestasis or in those with autoimmune hepatitis.


Sign in / Sign up

Export Citation Format

Share Document