scholarly journals Permanent CD8+ T Cell Depletion Prevents Proteinuria in Active Heymann Nephritis

1998 ◽  
Vol 188 (10) ◽  
pp. 1775-1784 ◽  
Author(s):  
Mark J. Penny ◽  
Rochelle A. Boyd ◽  
Bruce M. Hall

Active Heymann nephritis (HN) is a rat model of human idiopathic membranous nephropathy in which injury is thought to be mediated by membrane attack complex of complement (MAC) activated by antibody (Ab) to glomerular epithelial cells. Recent work has shown that HN develops in C6-deficient rats which cannot assemble MAC, and that infiltration of activated cytotoxic CD8+ T cells and macrophages into glomeruli coincides with proteinuria. This study examined the role of CD8+ T cells in mediating glomerular injury in HN by permanent CD8+ cytotoxic T cell depletion via adult thymectomy (ATx) and anti-CD8 mAb. Groups of rats were depleted of CD8+ T cells either before immunization for HN or 6 wk after immunization when Ab responses and glomerular IgG deposition were well established. These were compared with groups of HN, ATx/HN, and complete Freund's adjuvant (CFA) controls. Neither group of CD8+ T cell–depleted rats developed proteinuria, although there was normal development and deposition of Ab. CD8+ T cell–depleted rats developed neither T cell or macrophage infiltrates nor their effector cytokines, which are present in glomeruli of rats with HN. Examination of lymph node (LN) draining sites of immunization showed these findings were not explained by altered immune events within these LNs. It was concluded that CD8+ cytotoxic T cells are essential to the mediation of glomerular injury in HN and may be relevant to the pathogenesis and treatment of membranous nephropathy.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2920-2920
Author(s):  
Pim L.J. van der Heiden ◽  
Jayant S. Kalpoe ◽  
Wilmy M.E. Haarman ◽  
Sonja M. Opdam ◽  
Roelof Willemze ◽  
...  

Abstract CMV infection is inversely correlated with T cell immunity and frequently observed after T cell depleted allogeneic stem cell transplantation (TCD alloSCT). In case of profound T cell depletion of the graft, it may be anticipated that donor immunity is not of influence on immunity to CMV after TCD alloSCT, in contrast to conventional alloSCT. To address this hypothesis, we prospectively analyzed CMV load and T cell reconstitution in 20 consecutive CMV+ patients transplanted with a CMV+ or CMV− donor. The grafts were T cell depleted using Campath 20 mg “in the bag” and infused without further manipulation. No post transplantation GVHD prophylaxis had to be given, illustrating the intensity of T cell depletion. CMV DNA load was weekly monitored. As expected, by day 120 no difference in incidence of CMV reactivation was present between CMV+ patients with CMV+ or CMV− donors (8/9 vs 11/11). However, the area under the curve (AUC) representing total CMV DNA load was significantly higher in patients with a CMV− donor (AUC log 6.4 vs 5.5, p=0.03). 2 patients with a CMV− donor developed fatal CMV pneumonitis, whereas no CMV disease was present in patients with a CMV+ donor. To analyze whether this difference in the course of CMV infection was due to a difference in CMV specific T cell reconstitution, we characterized T cells populations after transplantation. At day 90, total T cell numbers in CMV+ patients were significantly increased in patients with a CMV+ donor compared to patients with a CMV− donor (1,2 vs 0.5*10E9/L, p=0.025). This difference was caused by an increase in CD8 T cells (1.0 vs 0.3*10E9/L, p=0.009) but not CD4 T cells (0.2 vs 0.2*10E9/L). To investigate whether this difference was due to expansion of CMV specific T cells, we analyzed 16 patients for whom HLA restricted CMV specific tetramers were available. All patients with a CMV+ donor developed a substantial tetramer positive (tet+) CD8 T cell response (>5*10E6/L) compared to only 33% of patients with a CMV− donor (7/7 vs 3/9, p=0.006). 13% (range 2 – 26%) of the CD8 T cells were tet+ in patients with a CMV+ donor at the peak of the response. This percentage does not include CD8 T cell responses directed against CMV epitopes with other HLA restriction. When extrapolated, this suggests that the increase of CD8 population was largely due to CMV specific T cells. In patients with a CMV− donor the CMV specific CD8 response could have developed from naive donor cells or from residual patient memory cells. We determined the origin of tet+ T cells in 3 patients with a CMV− donor. In all patients, the tet+ cells were of patient origin, indicating absence of a de novo primary donor response. In summary, although the incidence of CMV reactivation was identical in TCD alloSCT with a CMV+ or a CMV− donor, CMV load was lower in patients with a CMV+ donor. In CMV+ patients with a CMV+ donor a CMV specific CD8 response was always present, in contrast to most CMV+ patients with a CMV− donor. Furthermore, when tet+ cells developed early after SCT in CMV+ patients with a CMV− donor, they were of patient origin. We conclude that no primary CMV specific CD8 T cell response of donor origin develops shortly after TCD alloSCT, and that despite profound T cell depletion CMV specific memory CD8 T cells from donor or patient survive the conditioning regimen and provide protective immunity to CMV.


2020 ◽  
Vol 117 (23) ◽  
pp. 12961-12968 ◽  
Author(s):  
M. Zeeshan Chaudhry ◽  
Rosaely Casalegno-Garduno ◽  
Katarzyna M. Sitnik ◽  
Bahram Kasmapour ◽  
Ann-Kathrin Pulm ◽  
...  

Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.


2015 ◽  
Vol 195 (3) ◽  
pp. 1054-1063 ◽  
Author(s):  
Pablo Penaloza-MacMaster ◽  
Nicholas M. Provine ◽  
Eryn Blass ◽  
Dan H. Barouch

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3483-3483
Author(s):  
Jacopo Mariotti ◽  
Jason Foley ◽  
Kaitlyn Ryan ◽  
Nicole Buxhoeveden ◽  
Daniel Fowler

Abstract Although fludarabine and pentostatin are variably utilized for conditioning prior to clinical allogeneic transplantation, limited data exists with respect to their relative efficacy in terms of host immune T cell depletion and T cell suppression. To directly compare these agents in vivo in a murine model, we compared a regimen of fludarabine plus cyclophosphamide (FC) similar to one that we previously developed (Petrus et al, BBMT, 2000) to a new regimen of pentostatin plus cyclophosphamide (PC). Cohorts of mice (n=5–10) received a three-day regimen consisting of P alone (1 mg/kg/d), F alone (100 mg/kg/d), C alone (50 mg/kg/d), or combination PC or FC. Similar to our previous data, administration of P, F, or C alone yielded minimal host T cell depletion (as measured by enumeration of splenic CD4+ and CD8+ T cells) and minimal T cell suppression (as determined by CD3, CD28 co-stimulation of a constant number of remaining splenic T cells and measuring resultant cytokine secretion by multi-analyte assay). The PC and FC regimens were similar in terms of myeloid suppression (p=.2). However, the PC regimen was more potent in terms of depleting host CD4+ T cells (remaining host CD4 number [× 10^6/spleen], 2.1±0.3 [PC] vs. 4.4±0.6 [FC], p<0.01) and CD8+ T cells (remaining host CD8 number, 1.7±0.2 [PC] vs. 2.4±0.5 [FC], p<0.01). Moreover, the PC regimen yielded greater T cell immune suppression than the FC regimen (cytokine values are pg/ml/0.5×10^6 cells/ml; all comparisons p<0.05) with respect to capacity to secrete IFN-γ (13±5 [PC] vs. 48±12 [FC]), IL-2 (59±44 [PC] vs. 258±32 [FC]), IL-4 (34±10 [PC] vs. 104±12 [FC]), and IL-10 (15±3 [PC] vs. 34±5 [FC]). In light of this differential in both immune T cell depletion and suppression of T cell effector function, we hypothesized that T cells from PC-treated recipients would have reduced capacity to mediate a host-versus-graft rejection response (HVGR) relative to FC-treated recipients. To directly test this hypothesis, we utilized a host T cell add-back model of rejection whereby BALB/c hosts were lethally irradiated (1050 cGy; day -2), reconstituted with host-type T cells from PC- or FC-treated recipients (day -1; 0.1 × 10^6 T cells transferred), and finally challenged with fully MHC-disparate transplantation (B6 donor bone marrow cells, 10 × 10^6 cells; day 0). In vivo HVGR was quantified by the following method at day 7 post-BMT: harvest of splenic T cells, stimulation with host- or donor-type dendritic cells, and use of six-color flow cytometry to detect host T cells, CD4 and CD8 subsets, and cytokine secretion by capture method. Consistent with our hypothesis, PC-treated cells acquired greatly reduced alloreactivity in vivo relative to FC-treated cells: the percentage of host CD4+ T cells secreting IFN-γ in an allospecific manner was 2.3±0.8% in recipients of PC-treated T cells and 62.7±13.4% in recipients of FC-treated cells (p<0.001). Similarly, the percentage of host CD8+ T cells secreting IFN-γ in an allospecific manner was 8.6±2.8% in recipients of PC-treated T cells and 92.7±4.1% in recipients of FC-treated T cells (p<0.001). We therefore conclude that at similar levels of myeloid suppression, the PC regimen is superior to the FC regimen in terms of murine T cell depletion, suppression of global T cell cytokine secretion, and inhibition of in vivo capacity to acquire allospecificity in response to fully genetically disparate marrow allografts. These data provide a rationale to develop PC regimens as an alternative to currently utilized FC regimens.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1148-1148
Author(s):  
Brett Glotzbecker ◽  
Heidi Mills ◽  
Jacalyn Rosenblatt ◽  
Zekui Wu ◽  
Kerry Wellenstein ◽  
...  

Abstract Abstract 1148 Poster Board I-170 Graft versus host disease (GVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HCT). In vivo quantitative T-cell depletion using CAMPATH-1h (anti-CD52) has been explored in an effort to prevent acute GVHD. More recently, a regimen consisting of total lymphoid irradiation and anti-thymocyte globulin (ATG) has been shown to polarize T cells towards an inhibitory phenotype potentially reducing the associated risk for GVHD. However, these strategies may be associated with impaired post-transplant immune reconstitution, increased risk of tumor relapse and opportunistic infection. In this study we examined the pattern of cellular immune recovery following T cell depletion with CAMPATH-1h and compared results with an initial cohort of patients undergoing reduced intensity conditioning with TLI and ATG. Immunologic analyses were performed on twenty patients undergoing reduced intensity conditioning in conjunction with low dose CAMPATH -1h (50 mg) and an initial cohort of 5 patients treated with TLI/ATG. Conditioning with CAMPATH-1h resulted in the significant depletion of CD3, CD4, and CD8 T cells in the early post-transplant period and persistence of CD4 T cell depletion (< 200 cells /uL) for more than 6 months. Following TLI/ATG, persistent depletion of CD4+ T cells was also observed but no significant decrease in CD8 T cells was seen. A two-fold increase in circulating CD56+ NK cells, 21.8 to 41.6% (p=0.004), was seen following TLI-ATG, which was not noted following Campath conditioning. CAMPATH-1h conditioning was associated with a significant decrease in mean CD45RO+ memory T cells in the early post-transplant period (27.2 to 5.7% of the total population of nonadherent peripheral blood mononuclear cells, p=0.034). Relative percentages of naïve T cells (CD45RA+), central memory (CD45RO+CD62L+CCR7+) (CM), and effector memory (CD45RO+CD62L-CCR7-) (EM) T cells remained stable in the pre- and post-transplantation period. The CM:EM was 0.6 pre-transplant and at day 60, respectively. In contrast, T cell recovery in early post-transplant following the TLI/ATG regimen was associated with no reduction in CD45RO+ memory T cells. A significant rise in the relative percentages of naïve T cells from 39 to 61.3% (p=0.04), CM cells from 12 to 32.8% (p=0.05), a corresponding fall in EM cells from 57.9 to 32.5% (p=0.10), and a significant change in the CM:EM levels (0.2 pre-transplant, 1.0 day 60 post-transplant) was noted after TLI/ATG. The mean percentage of regulatory T cells as defined by the percentage of CD4+/CD25+ cells that express FoxP3 rose in the early post-transplant period following both regimens (8 to 20.7% at Day 30, p=0.003 in the CAMPATH group; 5.6 to 16.9% at Day 30, p=0.03 in the ATG/TLI group). Functional analyses demonstrated that the T cell proliferative response to the mitogen, Phytohemagglutinin (PHA), was profoundly depressed following CAMPATH-1h with mean SI decreasing from 34 pre-transplant to 1.4 at Day 30. In contrast, treatment with TLI/ATG resulted in no significant change in T cell proliferation in response to PHA with SI only decreasing from 45 pre-transplant to 36 at Day 30. Assessment of T cell polarization following stimulation with PHA or phorbol-ester (PMA)/ionomycin, recipient derived dendritic cells (DCs) or third party DCs demonstrated a rise of CD8+ T cells expressing, IL-4 and IL-10 consistent with a suppressor phenotype. Minimal T cell proliferation was observed following stimulation with patient derived DCs, which is consistent with suppression of the expansion of alloreactive T cells. In summary, both CAMPATH and TLI/ATG result in CD4+ T cell depletion but TLI/ATG resulted in relative preservation of CD8+ T cells, persistence of memory cells, relative preservation of central memory as compared to memory effector cells and intact response to mitogens. TLI/ATG therapy was also associated with the polarization of CD8+ T cells towards a Tc2 phenotype and lack of proliferation in response to recipient derived DCs. As such, TLI/ATG appears to be associated with more modest level of functional T cell depletion characterized by Tc2 polarization and suppression of host/donor alloreactivity. Disclosures Spitzer: Genzyme: Consultancy. Avigan:Genzyme: Consultancy.


1999 ◽  
Vol 191 (11) ◽  
pp. 1921-1932 ◽  
Author(s):  
Karin J. Metzner ◽  
Xia Jin ◽  
Fred V. Lee ◽  
Agegnehu Gettie ◽  
Daniel E. Bauer ◽  
...  

The role of CD8+ T lymphocytes in controlling replication of live, attenuated simian immunodeficiency virus (SIV) was investigated as part of a vaccine study to examine the correlates of protection in the SIV/rhesus macaque model. Rhesus macaques immunized for &gt;2 yr with nef-deleted SIV (SIVmac239Δnef) and protected from challenge with pathogenic SIVmac251 were treated with anti-CD8 antibody (OKT8F) to deplete CD8+ T cells in vivo. The effects of CD8 depletion on viral load were measured using a novel quantitative assay based on real-time polymerase chain reaction using molecular beacons. This assay allows simultaneous detection of both the vaccine strain and the challenge virus in the same sample, enabling direct quantification of changes in each viral population. Our results show that CD8+ T cells were depleted within 1 h after administration of OKT8F, and were reduced by as much as 99% in the peripheral blood. CD8+ T cell depletion was associated with a 1–2 log increase in SIVmac239Δnef plasma viremia. Control of SIVmac239Δnef replication was temporally associated with the recovery of CD8+ T cells between days 8 and 10. The challenge virus, SIVmac251, was not detectable in either the plasma or lymph nodes after depletion of CD8+ T cells. Overall, our results indicate that CD8+ T cells play an important role in controlling replication of live, attenuated SIV in vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chen Zou ◽  
Siyuan Wu ◽  
Haigang Wei ◽  
Hailing Luo ◽  
Zhe Tang ◽  
...  

LINC01355 has been demonstrated to be dysregulated in several cancers. However, the exact molecular function of LINC01355 in the pathogenesis of OSCC remains unstudied. Here, we reported the effect of LINC01355 in OSCC and investigated the mechanisms. Firstly, we found that the results indicated LINC01355 was increased in OSCC cells. Knockdown of LINC01355 repressed OSCC cell proliferation, migration, and invasion. Recently, immunotherapy is a significant method for the treatment of cancers, in which CD8+ T cells exhibit a significant role. The influence of LINC01355 on the antitumor activity of CD8+ T cells was also focused in this study. As shown, the silence of LINC01355 could repress OSCC tumor growth via inducing CD8+ T cell immune responses. In addition, we found that downregulation of LINC01355 significantly restrained CD8+ T cell apoptosis, induced CD8+ T cell percentage, and enhanced the cytolysis activity when cocultured with OSCC cells. It has been reported that the Notch pathway represses CD8+ T cell activity in cancer patients. In our present study, we displayed that lack of LINC01355 suppressed OSCC malignant behaviors and enhanced the antitumor activity of CD8+ T cells via inactivating Notch signaling. We showed that decreased LINC01355 significantly restrained the Notch signal via a decrease of Notch-1, JAG-1, and HES-1. Repression of Notch1 reversed the effect of LINC01355 in OSCC cells. In conclusion, it was implied that LINC01355 might induce the development of OSCC via modulating the Notch signal pathway, which could provide a candidate therapeutic target for OSCC.


2020 ◽  
Author(s):  
Jaana Westmeier ◽  
Krystallenia Paniskaki ◽  
Zehra Karaköse ◽  
Tanja Werner ◽  
Kathrin Sutter ◽  
...  

AbstractSARS-CoV-2 infection induces a T cell response that most likely contributes to virus control in COVID-19 patients, but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients.Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B, as well as perforin within different effector CD8+ T cell subsets. PD-1 expressing CD8+ T cells also produced cytotoxic molecules during acute infection indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2.Our data provides valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development.ImportanceCytotoxic T cells are responsible for the elimination of infected cells and are key players for the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group in comparison to younger patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2330-2330
Author(s):  
Constantijn J.M. Halkes ◽  
Inge Jedema ◽  
Judith Olde Wolbers ◽  
Esther M van Egmond ◽  
Peter A. Von Dem Borne ◽  
...  

Abstract Abstract 2330 In vivo T cell depletion with anti-thymocyte globulin (ATG) or alemtuzumab (anti-CD52) before reduced intensity allogeneic stem cell transplantation (alloSCT) in combination with in vitro T cell depletion with alemtuzumab reduces the risk of GVHD. Detectable levels of circulating antibodies are present up to several months after the alloSCT, leading to a delayed immune reconstitution which is associated with an increased incidence of opportunistic infections and early relapses. Prior to 2007, combined in vitro (Alemtuzumab 20 mg added “to the bag”) and in vivo T cell depletion with horse-derived ATG (h-ATG) resulted in good engraftment without GVHD in the absence of GVHD prophylaxis after reduced intensity alloSCT using conditioning with fludarabine and busulphan. Due to the unavailability of h-ATG, rabbit-derived ATG (r-ATG) 10–14 mg/kg was introduced in the conditioning regimen in 2007. Strikingly, in this cohort of patients, early EBV reactivation and EBV-associated post-transplantation lymphoproliferative disease (PTLD) was observed in 10 out of 18 patients at a median time of 6 weeks after alloSCT (range 5 to 11 weeks) in the absence of GVHD or immunosuppressive treatment. Analysis of T and B cell recovery early after transplantation revealed preferential depletion of T cells as compared to B cells, thereby allowing unrestricted proliferation of EBV infected B cells. Due to this unacceptable high incidence of EBV-related complications, in the conditioning regimen r-ATG was replaced by low dose alemtuzumab (15 mg i.v. day -4 and -3) in 2008. In this cohort of 60 patients, only 2 patients experienced transient EBV reactivation during the first 3 months after alloSCT and one patient developed an EBV-associated lymphoma 4 weeks after alloSCT. To investigate the mechanisms underlying the low incidence of EBV reactivation using alemtuzumab for T cell depletion, we studied the in vivo and in vitro effects of alemtuzumab on different lymphocyte subsets. First, lineage-specific reconstitution was studied in 20 patients from the alemtuzumab cohort with known CD52 negative diseases (11 AML and 9 multiple myeloma) to exclude the confounding effect of antibody absorption by malignant cells. Whereas at 3 weeks after alloSCT detectable numbers of circulating NK cells and T cells were observed (medians 71 (range 6–378), and 12 (range 1–1164)E6/L, respectively), no circulating B cells could be detected (median 0, range 0–1 E6/L). At 6 weeks after alloSCT, NK and T cell numbers further increased (medians 212 (52-813), and 130 (range 25–1509)E6/L, respectively), whereas B cell numbers still remained low in the majority of patients (median 15, range 0–813E6/L). In all patients, T cells were detectable before the appearance of circulating B cells. Furthermore, the expression of CD52 and the sensitivity to alemtuzumab-mediated complement-dependent cell lysis (CDC) of B cells, T cells and NK cells was measured in vitro. The highest CD52 expression was observed on B cells (mean fluorescence intensity (MFI) 120), resulting in 95% lysis after incubation with 10ug/mL alemtuzumab and rabbit complement. NK cells showed a significantly lower CD52 expression (MFI 41), which was also reflected by a lower susceptibility to alemtuzumab-mediated CDC (62% lysis). Interestingly, differential expression of CD52 was observed on CD4 and CD8 T cells (MFI 120 and 101, respectively). Cytotoxicity analysis revealed relative protection of CD8 compared to CD4 T cells against alemtuzumab-mediated CDC, resulting in 52% and 90% lysis, respectively. Based on these results, we investigated in detail the presence and phenotype of the CD4 and CD8 subsets and EBV-specific CD8 T cells using tetramer staining at 6 weeks after alloSCT. In accordance with the in-vitro expression and susceptibility data, circulating CD52+ CD8 T cells including EBV-specific T cells were detectable. Interestingly, the majority of circulating CD4 T cells (64-93%, n=4) lacked CD52 expression, explaining their capacity to persist in the presence of alemtuzumab. We conclude that in vivo and in vitro T cell depletion with alemtuzumab is associated with a relatively low risk of EBV-associated PTLD because of efficient B cell depletion and persistent EBV immunity allowed by the relative insusceptibility for alemtuzumab of CD8 T cells and the development of CD52 negative escape variants of CD4 T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1979-1979 ◽  
Author(s):  
C.J.M. Halkes ◽  
J.H.F. Falkenburg ◽  
H.M. van Egmond ◽  
J. Olde Wolbers ◽  
C.W.J. Starrenburg ◽  
...  

Abstract Abstract 1979 Control of replication of endogenous viruses like CMV and EBV is fully dependent on CMV or EBV specific T cells after allogeneic stem cell transplantation (alloSCT). In the absence of specific CD8 T cell control, proliferation of EBV infected B cells can lead to post transplantation lymphoproliferative disease (PTLD). In an initial cohort of patients treated with horse derived anti thymocyte globulin (h-ATG), no early PTLD was observed. However, due to unavailability in Europe, h-ATG had to be replaced by rabbit derived ATG (r-ATG), leading to an unacceptable high incidence of EBV-PTLD (26% during first 3 months after alloSCT). Replacement of r-ATG by alemtuzumab (ALT) significantly reduced the incidence of EBV-PTLD (3 months incidence of EBV-PTLD 2%). To determine the immunological basis of these findings we performed a detailed analysis of immune reconstitution in these three cohorts of transplanted patients. The first cohort (41 patients) received h-ATG (Lymphoglobulin) 10 mg/kg/day for 4 days. The second cohort (19 patients) received r-ATG (Thymoglobulin) 2.0 or 3.5 mg/kg/day for 4 days and the third cohort (60 patients) received ALT, 15 mg/day for 2 days. All grafts consisted of PBSC to which 20 mg of ALT was added for in vitro T cell depletion. All patients received a fludarabin and busulphan based conditioning regimen. No standard post transplantation immunosuppressive treatment was given. In the r-ATG cohort, early EBV-PTLD occurred after a median of 7 weeks (range 4–12 weeks) post alloSCT. Three r-ATG treated patients died while high levels of circulating EBV-DNA were present (> log 4.0 copies/mL). Incidence of CMV disease was not significantly different in the three cohorts (5%, 6% and 0%, respectively). In contrast to the other 2 cohorts, immune reconstitution in the r-ATG cohort was characterized by an imbalance between recovery of B cells and CD8 T cells. Already 3 weeks after alloSCT, the majority (67%) of r-ATG patients showed a more rapid reconstitution of B cells than CD8 T cells, leading to B cells outnumbering CD8 T cells. This was seen in only a small minority of patients after h-ATG and ALT (17% and 6%, respectively, p<0.01 versus r-ATG). Because rapid recovery of T cells in the alemtuzumab patients was frequently found in the presence of circulating ALT (mean concentration 0.43 μg/mL and 0.12 μg/mL after 3 and 6 weeks, respectively), the phenotype of circulating CD4 and CD8 T cells at 6 weeks after ALT was analyzed. The majority of circulating CD8 and CD4 T cells lacked CD52 expression (56% (range 0–99%) and 81% (range 0–93%), respectively). Using tetramer staining, cytotoxicity assays and analysis of cytokine production, we demonstrated the presence of functional CD52 negative as well as CD52 positive CMV and EBV specific CD8 T cells. Based on FLAER negativity, it was demonstrated that the CD52 negative T cells are GPI anchor deficient, representing a PNH-like clone escaping ALT induced cell lysis. Because almost half of the circulating CD8 T cells were CD52 positive, we examined expression of CD52 and the in-vitro sensitivity to ALT-mediated complement-dependent cell lysis (CDC) of B cells, CD4 and CD8 T cells of healthy donors. The highest CD52 expression was observed on B cells (mean fluorescence intensity (MFI) 120), resulting in 95% lysis after incubation with ALT and complement. Differential expression of CD52 was observed on CD4 and CD8 T cells, MFI 120 and 101 respectively, resulting in relative protection of CD52 positive CD8 compared to CD4 T cells against ALT-mediated CDC (52% and 90% lysis). We conclude that the high incidence of EBV-PTLD after in-vivo T cell depletion with r-ATG is caused by an induced imbalance between B and T cell recovery, which is not seen after h-ATG or ALT. In-vivo T cell depletion with ALT is associated with a relatively low risk of EBV disease because of efficient B cell depletion and persistent EBV immunity due to the relative insusceptibility for ALT of CD8 T cells and the development of functional CD52 negative escape variants of CD4 and CD8 T cells. Disclosures: Off Label Use: Alemtuzumab and Anti Thymocyte Globulin used for in vivo T cell depletion prior to allogeneic stem cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document