scholarly journals Identification of Ny-Eso-1 Epitopes Presented by Human Histocompatibility Antigen (Hla)-Drb4*0101–0103 and Recognized by Cd4+T Lymphocytes of Patients with Ny-Eso-1–Expressing Melanoma

2000 ◽  
Vol 191 (4) ◽  
pp. 625-630 ◽  
Author(s):  
Elke Jäger ◽  
Dirk Jäger ◽  
Julia Karbach ◽  
Yao-Tseng Chen ◽  
Gerd Ritter ◽  
...  

NY-ESO-1 is a member of the cancer-testis family of tumor antigens that elicits strong humoral and cellular immune responses in patients with NY-ESO-1–expressing cancers. Since CD4+ T lymphocytes play a critical role in generating antigen-specific cytotoxic T lymphocyte and antibody responses, we searched for NY-ESO-1 epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules. Autologous monocyte-derived dendritic cells of cancer patients were incubated with recombinant NY-ESO-1 protein and used in enzyme-linked immunospot (ELISPOT) assays to detect NY-ESO-1–specific CD4+ T lymphocyte responses. To identify possible epitopes presented by distinct HLA class II alleles, overlapping 18-mer peptides derived from NY-ESO-1 were synthetized and tested for recognition by CD4+ T lymphocytes in autologous settings. We identified three NY-ESO-1–derived peptides presented by DRB4*0101–0103 and recognized by CD4+ T lymphocytes of two melanoma patients sharing these HLA class II alleles. Specificity of recognition was confirmed by proliferation assays. The characterization of HLA class II–restricted epitopes will be useful for the assessment of spontaneous and vaccine-induced immune responses of cancer patients against defined tumor antigens. Further, the therapeutic efficacy of active immunization using antigenic HLA class I–restricted peptides may be improved by adding HLA class II–presented epitopes.

1992 ◽  
Vol 4 (9) ◽  
pp. 1055-1063 ◽  
Author(s):  
E. M. Riley ◽  
O. Olerup ◽  
S. Bennett ◽  
P. Rowe ◽  
S. J. Allen ◽  
...  

1999 ◽  
Vol 189 (5) ◽  
pp. 767-778 ◽  
Author(s):  
Pascal Chaux ◽  
Valérie Vantomme ◽  
Vincent Stroobant ◽  
Kris Thielemans ◽  
Jurgen Corthals ◽  
...  

MAGE-type genes are expressed by many tumors of different histological types and not by normal cells, except for male germline cells, which do not express major histocompatibility complex (MHC) molecules. Therefore, the antigens encoded by MAGE-type genes are strictly tumor specific and common to many tumors. We describe here the identification of the first MAGE-encoded epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules to CD4+ T lymphocytes. Monocyte-derived dendritic cells were loaded with a MAGE-3 recombinant protein and used to stimulate autologous CD4+ T cells. We isolated CD4+ T cell clones that recognized two different MAGE-3 epitopes, MAGE-3114–127 and MAGE-3121–134, both presented by the HLA-DR13 molecule, which is expressed in 20% of Caucasians. The second epitope is also encoded by MAGE-1, -2, and -6. Our procedure should be applicable to other proteins for the identification of new tumor-specific antigens presented by HLA class II molecules. The knowledge of such antigens will be useful for evaluation of the immune response of cancer patients immunized with proteins or with recombinant viruses carrying entire genes coding for tumor antigens. The use of antigenic peptides presented by class II in addition to peptides presented by class I may also improve the efficacy of therapeutic antitumor vaccination.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4116-4116
Author(s):  
P. van Balen ◽  
C.A.M. van Bergen ◽  
I. Jedema ◽  
S.A.P. van Luxemburg-Heijs ◽  
J.C. Harskamp ◽  
...  

Abstract Abstract 4116 Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) can mediate curative Graft-versus-Leukemia (GVL) reactivity although frequently at the cost of Graft-versus-Host Disease (GVHD). We previously illustrated that donor CD8 T lymphocytes recognizing HLA class-I restricted minor histocompatibility antigens (MiHAs) that are broadly expressed on tissues of the recipient cause GVL associated with GVHD, whereas T lymphocytes recognizing MiHAs selectively expressed on hematopoietic cells, including the malignant cells, can selectively mediate GVL without GVHD. Since in contrast to HLA class-I, expression of HLA class-II molecules is predominantly restricted to hematopoietic cells, we hypothesized that infused purified donor CD4 T lymphocytes may selectively recognize and eliminate hematopoietic cells from the recipient resulting in GVL without GVHD. We treated a patient with CML in blastic phase in remission after intensive chemotherapy with T cell depleted alloSCT from his HLA-identical sibling donor after myelo-ablative conditioning. After donor engraftment, recipient hematopoiesis reoccurred within 3 months to 90% of CD8 T lymphocytes, 13% of CD4 T lymphocytes and 5% of myelopoiesis. As part of a clinical trial, the patient was treated with 106/kg positively selected purified donor derived CD4 T lymphocytes resulting within 19 weeks in conversion into full donor chimerism in all hematopoietic cell lineages in the total absence of GVHD. To characterize the nature of this hematopoiesis restricted immune response, in vivo activated HLA-DR positive CD4 and CD8 T lymphocytes were clonally isolated by flowcytometric cell sorting at the time of the clinical response, expanded and tested for alloreactivity on patient and donor derived hematopoietic target cells using IFNγ ELISA. From the 204 expanding CD4 T lymphocyte clones 31 clones were alloreactive, whereas none of the 66 expanding CD8 T lymphocyte clones showed alloreactivity. To further identify the fine specificity of this hematopoiesis directed HLA class-II restricted immune response, target molecules of several T lymphocyte clones were molecularly characterized using whole genome association scanning. We first performed blocking studies with HLA class-II restricted monoclonal antibodies and identified HLA-DR to be the restriction molecule. Next, a large panel of third party EBV-LCLs was retrovirally transduced with each of the possible restriction molecules being HLA-DRB1*11:01, HLA-DRB1*15:01, HLA-DRB3*02:02 and HLA-DRB5*01:01. By comparing the recognition pattern of the transduced EBV-LCLs with the 1.1 million single nucleotide polymorphisms in each EBV-LCL, we identified 3 novel MiHAs. Synthesis and analysis of the patient and donor derived allelic peptide variants further confirmed the specificity of the MiHAs as LB-KHNYN-1K in the context of HLA-DRB5*01:01, LB-CTSB-1G in HLA-DRB1*11:01 and LB-ZDHHC13-1K in HLA-DRB1*15:01. Gene expression profiles of KHNYN (located on chromosome 14), CTSB (chromosome 8) and ZDHHC13 (chromosome 11) illustrated that the genes encoding these MiHAs were not only transcribed in hematopoietic cells, but also in other tissues including GVHD target tissues. These results further illustrated that the hematopoietic specificity of the CD4 T lymphocyte response was mainly defined by the restricted expression of the HLA-DR molecules on hematopoietic cells. We conclude that purified CD4 DLI can lead to GVL without GVHD by a selective HLA class-II restricted immune response against patient hematopoiesis. By molecular characterization of 3 novel HLA-DR restricted MiHAs we illustrated that the relative specificity of HLA class-II molecules on hematopoietic cells under non inflammatory conditions was probably responsible for this effect. Since HLA class-II is predominantly expressed on hematopoietic cells only, infusion of donor CD4 T lymphocytes under non inflammatory conditions after HLA identical alloSCT can result in efficient induction of GVL without the toxicity of GVHD. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 211 (4) ◽  
pp. 715-725 ◽  
Author(s):  
Xiaozhou Fan ◽  
Sergio A. Quezada ◽  
Manuel A. Sepulveda ◽  
Padmanee Sharma ◽  
James P. Allison

Cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade with a monoclonal antibody yields durable responses in a subset of cancer patients and has been approved by the FDA as a standard therapy for late-stage melanoma. We recently identified inducible co-stimulator (ICOS) as a crucial player in the antitumor effects of CTLA-4 blockade. We now show that concomitant CTLA-4 blockade and ICOS engagement by tumor cell vaccines engineered to express ICOS ligand enhanced antitumor immune responses in both quantity and quality and significantly improved rejection of established melanoma and prostate cancer in mice. This study provides strong support for the development of combinatorial therapies incorporating anti–CTLA-4 and ICOS engagement.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1498-1505 ◽  
Author(s):  
Masaki Yasukawa ◽  
Hideki Ohminami ◽  
Kensuke Kojima ◽  
Takaaki Hato ◽  
Atsuhiko Hasegawa ◽  
...  

Bcr-abl fusion peptide–specific CD4+ T-lymphocyte clones have recently been shown to augment colony formation by chronic myelogenous leukemia (CML) cells in a bcr-abl type-specific and HLA class II–restricted manner without addition of exogenous antigen. These findings suggest that CML cells can naturally process and present endogenous bcr-abl fusion protein to CD4+ T lymphocytes in the context of HLA class II molecules. To verify this possibility, the ability of CML-derived dendritic cells (DCs) to present endogenous bcr-abl fusion protein to bcr-abl fusion peptide–specific CD4+ T-lymphocyte clones was investigated. The bcr-abl b3a2 peptide–specific and HLA-DRB1*0901–restricted CD4+T-lymphocyte clones produced interferon-γ in response to stimulation with monocyte-derived DCs from HLA-DRB1*0901+ patients with b3a2 type CML. In contrast, DCs from patients with HLA-DRB1*0901− or b2a2 type CML and those from healthy individuals did not exert stimulatory activity on bcr-abl–specific CD4+ T-lymphocyte clones. The response of CD4+T-lymphocyte clones to CML-derived mature DCs was higher than that to immature DCs and was inhibited by anti–HLA-DR monoclonal antibody. These data suggest that CML-derived DCs can process and present endogenous bcr-abl fusion protein to CD4+ T lymphocytes.


1990 ◽  
Vol 20 (4) ◽  
pp. 847-854 ◽  
Author(s):  
Stephen Man ◽  
Robert I. Lechler ◽  
J. Richard Batchelor ◽  
Claire E. M. Sharrock

2015 ◽  
Vol 240 (10) ◽  
pp. 1310-1318 ◽  
Author(s):  
Jiang Chen ◽  
Xiao-Zhong Guo ◽  
Hong-Yu Li ◽  
Di Wang ◽  
Xiao-Dong Shao

Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.


Sign in / Sign up

Export Citation Format

Share Document