scholarly journals Comparison of cytotoxic T lymphocyte responses against pancreatic cancer induced by dendritic cells transfected with total tumor RNA and fusion hybrided with tumor cell

2015 ◽  
Vol 240 (10) ◽  
pp. 1310-1318 ◽  
Author(s):  
Jiang Chen ◽  
Xiao-Zhong Guo ◽  
Hong-Yu Li ◽  
Di Wang ◽  
Xiao-Dong Shao

Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.

1994 ◽  
Vol 80 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Frank P. Holladay ◽  
Rajani Choudhuri ◽  
Teresa Heitz ◽  
Gary W. Wood

✓ Cytotoxic T lymphocytes specific for tumor-associated antigens are produced by exposing animals to tumor cells and stimulating lymphocytes from animals immunized in vitro with tumor cells and small amounts of interleukin-2 (IL-2). This study was designed to determine whether a fast-growing immunogenic avian sarcoma virus-induced glioma produces primed cytotoxic T lymphocyte precursors during its progression. Lymphocytes from intracerebral glioma-bearing rats generally failed to proliferate in vitro in response to immunization with tumor cells and IL-2 and, when proliferative responses were observed, the lymphocytes were not cytotoxic for glioma cells. However, when the same tumor was growing subcutaneously, lymphocytes proliferated and exhibited glioma-specific cytotoxicity when stimulated in vitro with autologous tumor cells and IL-2. Subcutaneous immunization of intracerebral glioma-bearing rats with tumor cells and adjuvant induced strong cytotoxic T lymphocyte responses. The results demonstrated that, while intracerebral tumor progression itself does not induce an antiglioma immune response, immune responses to tumor-associated antigens may be induced by systemic immunization of tumor-bearing animals. The results suggest that the immunogenicity of brain tumors is masked by the immunologically privileged status of the brain, not by the induction of generalized immune suppression during tumor progression.


2006 ◽  
Vol 13 (7) ◽  
pp. 733-739 ◽  
Author(s):  
Zhijun Wang ◽  
Li Xiang ◽  
Junjie Shao ◽  
Zhenghong Yuan

ABSTRACT In this article, the immunogenicity of tRNA and the recognition of tRNA by Toll-like receptors (TLRs) are analyzed. Analyses of the effects of different tRNAAla(UGC) fragments (tRNAAla1-76 [corresponding to positions 1 through 76], tRNAAla26-76, tRNAAla40-76, tRNAAla62-76, tRNAAla1-70, tRNAAla26-70, tRNAAla40-70, and tRNAAla62-70) on the immune responses of hepatitis B surface antigen (HBsAg) were performed with BALB/c mice. Results show that tRNAAla1-76, tRNAAla26-76, tRNAAla40-76, and tRNAAla62-76 adjuvants not only induced stronger T helper (Th) 1 immune responses but also cytotoxic-T-lymphocyte (CTL) responses relative to tRNAAla1-70, tRNAAla26-70, tRNAAla40-70, and tRNAAla62-70 adjuvants in HBsAg immunization. A deletion of the D loop (tRNAAla26-76), anticodon loop (tRNAAla40-76), or TψC (tRNAAla62-76) loop of tRNAAla(UGC) does not significantly decrease the adjuvant characteristic of tRNAAla(UGC). However a deletion of the 3′-end CCACCA sequence (tRNAAla1-70, tRNAAla26-70, tRNAAla40-70, and tRNAAla62-70) of tRNAAla(UGC) significantly decreased the adjuvant characteristic in Th1 and CTL immune responses. Moreover, the recognitions of different tRNAAla(UGC) fragments by TLR3, TLR7, TLR8, and TLR9 were analyzed. Results show that a deletion of the 3′ CCACCA sequence of tRNAAla(UGC) significantly decreased the recognition by TLR3. We concluded that the 3′ CCACCA sequence of tRNAAla(UGC) is the important motif to induce Th1 and CTL responses and this motif can be effectively recognized by TLR3.


1988 ◽  
Vol 69 (5) ◽  
pp. 751-759 ◽  
Author(s):  
Shin-Ichi Miyatake ◽  
Haruhiko Kikuchi ◽  
Kohichi Iwasaki ◽  
Junkoh Yamashita ◽  
Yuzirou Namba ◽  
...  

✓ Eleven lymphocyte clones were established from the peripheral blood lymphocytes of a patient with gliosarcoma by means of autologous tumor stimulation and the limiting-dilution technique with recombinant interleukin-2. Ten of the 11 clones were cytotoxic against the autologous tumor cell line GI-1. Seven of the 10 clones were also cytotoxic against allogeneic brain-tumor lines and HeLa cells, one clone was cytotoxic against several target cells, and two clones were specifically cytotoxic against GI-1 and allogeneic brain-tumor cells. One of the 11 clones was not cytotoxic against any target cells tested. Lymphokine-activated killer cells induced by recombinant interleukin-2 alone exhibited cytotoxic activity against all target tumor cells tested. Surface phenotypic analysis revealed that all lymphocyte clones expressed CD3 antigen, some expressed CD4 antigen, and others expressed CD8 antigen. These clones seemed to be antigen-specific cytotoxic T lymphocyte clones. Analysis with these antigen-specific cytotoxic T lymphocyte clones may be useful in the elucidation of tumor-specific or tumor-associated antigens on autologous tumor cells.


Leukemia ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 3310-3322 ◽  
Author(s):  
Nandakumar Packiriswamy ◽  
Deepak Upreti ◽  
Yumei Zhou ◽  
Rehan Khan ◽  
Amber Miller ◽  
...  

AbstractOncolytic virus therapy leads to immunogenic death of virus-infected tumor cells and this has been shown in preclinical models to enhance the cytotoxic T-lymphocyte response against tumor-associated antigens (TAAs), leading to killing of uninfected tumor cells. To investigate whether oncolytic virotherapy can increase immune responses to tumor antigens in human subjects, we studied T-cell responses against a panel of known myeloma TAAs using PBMC samples obtained from ten myeloma patients before and after systemic administration of an oncolytic measles virus encoding sodium iodide symporter (MV-NIS). Despite their prior exposures to multiple immunosuppressive antimyeloma treatment regimens, T-cell responses to some of the TAAs were detectable even before measles virotherapy. Measurable baseline T-cell responses against MAGE-C1 and hTERT were present. Furthermore, MV-NIS treatment significantly (P < 0.05) increased T-cell responses against MAGE-C1 and MAGE-A3. Interestingly, one patient who achieved complete remission after MV-NIS therapy had strong baseline T-cell responses both to measles virus proteins and to eight of the ten tested TAAs. Our data demonstrate that oncolytic virotherapy can function as an antigen agnostic vaccine, increasing cytotoxic T-lymphocyte responses against TAAs in patients with multiple myeloma, providing a basis for continued exploration of this modality in combination with immune checkpoint blockade.


2014 ◽  
Vol 211 (4) ◽  
pp. 715-725 ◽  
Author(s):  
Xiaozhou Fan ◽  
Sergio A. Quezada ◽  
Manuel A. Sepulveda ◽  
Padmanee Sharma ◽  
James P. Allison

Cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade with a monoclonal antibody yields durable responses in a subset of cancer patients and has been approved by the FDA as a standard therapy for late-stage melanoma. We recently identified inducible co-stimulator (ICOS) as a crucial player in the antitumor effects of CTLA-4 blockade. We now show that concomitant CTLA-4 blockade and ICOS engagement by tumor cell vaccines engineered to express ICOS ligand enhanced antitumor immune responses in both quantity and quality and significantly improved rejection of established melanoma and prostate cancer in mice. This study provides strong support for the development of combinatorial therapies incorporating anti–CTLA-4 and ICOS engagement.


2000 ◽  
Vol 191 (4) ◽  
pp. 625-630 ◽  
Author(s):  
Elke Jäger ◽  
Dirk Jäger ◽  
Julia Karbach ◽  
Yao-Tseng Chen ◽  
Gerd Ritter ◽  
...  

NY-ESO-1 is a member of the cancer-testis family of tumor antigens that elicits strong humoral and cellular immune responses in patients with NY-ESO-1–expressing cancers. Since CD4+ T lymphocytes play a critical role in generating antigen-specific cytotoxic T lymphocyte and antibody responses, we searched for NY-ESO-1 epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules. Autologous monocyte-derived dendritic cells of cancer patients were incubated with recombinant NY-ESO-1 protein and used in enzyme-linked immunospot (ELISPOT) assays to detect NY-ESO-1–specific CD4+ T lymphocyte responses. To identify possible epitopes presented by distinct HLA class II alleles, overlapping 18-mer peptides derived from NY-ESO-1 were synthetized and tested for recognition by CD4+ T lymphocytes in autologous settings. We identified three NY-ESO-1–derived peptides presented by DRB4*0101–0103 and recognized by CD4+ T lymphocytes of two melanoma patients sharing these HLA class II alleles. Specificity of recognition was confirmed by proliferation assays. The characterization of HLA class II–restricted epitopes will be useful for the assessment of spontaneous and vaccine-induced immune responses of cancer patients against defined tumor antigens. Further, the therapeutic efficacy of active immunization using antigenic HLA class I–restricted peptides may be improved by adding HLA class II–presented epitopes.


2002 ◽  
Vol 76 (20) ◽  
pp. 10155-10168 ◽  
Author(s):  
V. Novitsky ◽  
H. Cao ◽  
N. Rybak ◽  
P. Gilbert ◽  
M. F. McLane ◽  
...  

ABSTRACT A systematic analysis of immune responses on a population level is critical for a human immunodeficiency virus type 1 (HIV-1) vaccine design. Our studies in Botswana on (i) molecular analysis of the HIV-1 subtype C (HIV-1C) epidemic, (ii) frequencies of major histocompatibility complex class I HLA types, and (iii) cytotoxic T-lymphocyte (CTL) responses in the course of natural infection allowed us to address HIV-1C-specific immune responses on a population level. We analyzed the magnitude and frequency of the gamma interferon ELISPOT-based CTL responses and translated them into normalized cumulative CTL responses. The introduction of population-based cumulative CTL responses reflected both (i) essentials of the predominant virus circulating locally in Botswana and (ii) specificities of the genetic background of the Botswana population, and it allowed the identification of immunodominant regions across the entire HIV-1C. The most robust and vigorous immune responses were found within the HIV-1C proteins Gag p24, Vpr, Tat, and Nef. In addition, moderately strong responses were scattered across Gag p24, Pol reverse transcriptase and integrase, Vif, Tat, Env gp120 and gp41, and Nef. Assuming that at least some of the immune responses are protective, these identified immunodominant regions could be utilized in designing an HIV vaccine candidate for the population of southern Africa. Targeting multiple immunodominant regions should improve the overall vaccine immunogenicity in the local population and minimize viral escape from immune recognition. Furthermore, the analysis of HIV-1C-specific immune responses on a population level represents a comprehensive systematic approach in HIV vaccine design and should be considered for other HIV-1 subtypes and/or different geographic areas.


Sign in / Sign up

Export Citation Format

Share Document