scholarly journals CD4+CD25+ Immunoregulatory T Cells

2002 ◽  
Vol 196 (3) ◽  
pp. 401-406 ◽  
Author(s):  
José L. Cohen ◽  
Aurélie Trenado ◽  
Douglas Vasey ◽  
David Klatzmann ◽  
Benoît L. Salomon

CD4+CD25+ immunoregulatory T cells play a pivotal role in preventing organ-specific autoimmune diseases and in tolerance induction to allogeneic organ transplants. We investigated whether these cells could also control graft-versus-host disease (GVHD), the main complication after allogeneic hematopoietic stem cell transplantation (HSCT). Here, we show that the few CD4+CD25+ T cells naturally present in the transplant regulate GVHD because their removal from the graft dramatically accelerates this disease. Furthermore, the addition of freshly isolated CD4+CD25+ T cells at time of grafting significantly delays or even prevents GVHD. Ex vivo–expanded CD4+CD25+ regulatory T cells obtained after stimulation by allogeneic recipient-type antigen-presenting cells can also modulate GVHD. Thus, CD4+CD25+ regulatory T cells represent a new therapeutic tool for controlling GVHD in allogeneic HSCT. More generally, these results outline the tremendous potential of regulatory T cells as therapeutics.

2011 ◽  
Vol 11 ◽  
pp. 2620-2634
Author(s):  
Vanessa Morales-Tirado ◽  
Wioleta Luszczek ◽  
Marié van der Merwe ◽  
Asha Pillai

Every year individuals receive hematopoietic stem cell transplantation (HSCT) to eradicate malignant and nonmalignant disease. The immunobiology of allotransplantation is an area of ongoing discovery, from the recipient's conditioning treatment prior to the transplant to the donor cell populations responsible for engraftment, graft-versus-host disease, and graft-versus-tumor effect. In this review, we focus on donor-type immunoregulatory T cells, namely, natural killer T cells (NKT) and regulatory T cells (Treg), and their current and potential roles in tolerance induction after allogeneic HSCT.


Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5125-5133 ◽  
Author(s):  
Dat Q. Tran ◽  
John Andersson ◽  
Donna Hardwick ◽  
Lolita Bebris ◽  
Gabor G. Illei ◽  
...  

Abstract Although adoptive transfer of regulatory T cells (Foxp3+ Tregs) has proven to be efficacious in the prevention and treatment of autoimmune diseases and graft-versus-host disease in rodents, a major obstacle for the use of Treg immunotherapy in humans is the difficulty of obtaining a highly purified preparation after ex vivo expansion. We have identified latency-associated peptide (LAP) and IL-1 receptor type I and II (CD121a/CD121b) as unique cell-surface markers that distinguish activated Tregs from activated FOXP3− and FOXP3+ non-Tregs. We show that it is feasible to sort expanded FOXP3+ Tregs from non-Tregs with the use of techniques for magnetic bead cell separation based on expression of these 3 markers. After separation, the final product contains greater than 90% fully functional FOXP3+ Tregs. This novel protocol should facilitate the purification of Tregs for both cell-based therapies as well as detailed studies of human Treg function in health and disease.


2004 ◽  
Vol 172 (3) ◽  
pp. 1531-1539 ◽  
Author(s):  
Song Guo Zheng ◽  
Ju Hua Wang ◽  
Michael N. Koss ◽  
Francisco Quismorio ◽  
J. Dixon Gray ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3222-3222
Author(s):  
Jenny Zilberberg ◽  
Kira Goldgirsh ◽  
Robert Korngold ◽  
Thea M. Friedman

Abstract CD4+CD25+ regulatory T cells (Treg) are essential for the maintenance of self-tolerance and have also been implicated in the control of alloreactive immune responses. Several studies using murine models of graft-vs.-host disease (GVHD) have shown that addition of equivalent numbers of Treg to the donor T cell inoculum at time of hematopoietic stem cell transplantation can significantly reduce the incidence of GVHD. In addition, in an MHC-matched, minor histocompatibility disparate model, the infusion of Treg ten days post-transplantation was shown to ameliorate the progression of GVHD while permitting a graft-versus-leukemia effect. However, because Treg constitute <5% of peripheral CD4+ T cells in humans, the use of freshly isolated Treg to treat and/or prevent GVHD, as well as other diseases in the clinical situation, is limited. Therefore, much effort is now under way to expand Treg in order to have sufficient numbers for therapeutic use. There is little available information regarding the repertoire complexity of ex vivo, polyclonally expanded regulatory T cells. We hypothesize that like their CD4+CD25− T cell counterparts, the diversity of the Treg T cell receptor (TCR) repertoire will also be complex. To this end, CD4+CD25− and CD4+CD25+ T cells from B10.BR mice were purified using fluorescence activated cell sorting; both populations were polyclonally expanded using CD3/CD28 paramagnetic microbeads in combination with high levels (100 IU/ml) of hrIL-2. After achieving a greater than 50 fold expansion, RNA from 1–1.5×107 cells was isolated for RT-PCR. The complexity of the T cell repertoire of expanded CD4+CD25− and CD4+CD25+ was determined using TCR Vb CDR3-size spectratype analysis. The PCR products were run on a sequencing gel and analyzed by the GeneMapper Software from Applied Biosystems. This comparison revealed that the number of resolvable Vb families is more heterogeneous in the CD25− populations. Whether this reflected a lack of complexity in the regulatory repertoire warrants further investigation. However, for the resolvable Vb families there were no significant differences in the complexity indexes between these two groups.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4485-4485
Author(s):  
Antonio Pierini ◽  
Dominik Schneidawind ◽  
Mareike Florek ◽  
Maite Alvarez ◽  
Yuqiong Pan ◽  
...  

Donor derived regulatory T cells (Tregs) effectively prevent graft versus host disease (GVHD) in mouse models and in early phase clinical trials. Interleukin 2 (IL-2) therapy in patients with chronic GVHD (cGVHD) can increase Treg number and the Treg/CD4+ T cell ratio resulting in organ damage reduction and symptom relief. Less is known regarding Treg-based treatment for acute GVHD (aGVHD). In this study we evaluated the role of donor Treg cellular therapy for aGVHD treatment in well established murine models. T cell depleted bone marrow (TCD BM) from C57BL/6 mice was transplanted into lethally irradiated (8 Gy) BALB/C recipients together with 7.5x105 to 1x106/animal donor derived luc+ Tcons. Naturally occurring CD4+CD25+FoxP3+ donor type Tregs (nTregs) were purified from C57BL/6 donor mice. 2.5x105/mouse nTregs were injected at day 6 or 7 after transplant in mice that showed clear clinical signs of aGVHD and Tcon proliferation assessed by bioluminescence imaging (BLI). Survival analysis showed a favorable trend for nTreg treated mice, but the impact of this treatment was modest and not statistically significant (p 0.08). aGVHD is a disease characterized by the activation and rapid proliferation of alloreactive donor conventional T cells (Tcons) directed against host antigens, so one of the major obstacles of this approach is to overcome the large number and effector function of activated Tcons. Several studies have utilized ex vivo expansion of Tregs to increase their number with the goal of maintaining suppressive function. We developed a different strategy with the intent to “educate” Tregs to specifically suppress the reactive Tcon population. We incubated 2.5x105 donor derived Tregs with irradiated (3000 cGy) blood of aGVHD affected mice for 20 hours without further stimulation and injected the entire pool of these cells, termed educated Treg (eTregs), at day 7 or 8 after transplant and Tcon injection. Interestingly eTregs significantly improved aGVHD affected mouse survival (p = 0.0025 vs Tcons alone). BLI showed no difference between the groups (p = 0.85) because the treatment intervened after Tcon proliferation and activation was initiated. To evaluate eTreg impact on graft versus tumor (GVT) effects, we transplanted BALB/C mice with C57BL/6 TCD BM and 1x104/mouse luc+ A20 tumor cells along with 1x106/mouse donor Tcons and 2.5x105 eTregs. Mice that received TCD BM and A20 tumor cells alone died from progressive tumor growth, while mice that received Tcons died from GVHD without tumor engraftment. Further animals that received both Tcon and eTreg treatment did not have tumor engraftment demonstrating that eTregs do not impact Tcon mediated GVT effects. Further studies are ongoing to characterize the eTreg population as compared to nTreg, with respect to expression of activation markers and in functional assays. Our observations indicate that Tregs can be ex vivo educated to suppress in vivo reactive and proliferating Tcons. Moreover our data demonstrate that eTreg adoptive transfer is clinically feasible and promising. These findings may be relevant for the development of clinical grade Treg based cellular therapy for the treatment of conditions caused by immune dysregulation such as aGVHD and autoimmune diseases and for transplant tolerance induction. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adriana Gutiérrez-Hoya ◽  
Rubén López-Santiago ◽  
Jorge Vela-Ojeda ◽  
Laura Montiel-Cervantes ◽  
Octavio Rodríguez-Cortés ◽  
...  

CD8+ T cells that secrete proinflammatory cytokines play a central role in exacerbation of inflammation; however, a new subpopulation of CD8 regulatory T cells has recently been characterized. This study analyzes the prominent role of these different subpopulations in the development of graft-versus-host disease (GVHD). Samples from 8 healthy donors mobilized with Filgrastim® (G-CSF) and 18 patients who underwent allogeneic hematopoietic stem cell transplantation (HSCT) were evaluated by flow cytometry. Mobilization induced an increase in Tc1 (p<0.01), Th1 (p<0.001), Tc17 (p<0.05), and CD8+IL-10+ cells (p<0.05), showing that G-CSF induces both pro- and anti-inflammatory profiles. Donor-patient correlation revealed a trend (p=0.06) toward the development of GVHD in patients who receive a high percentage of Tc1 cells. Patients with acute GVHD (aGVHD), either active or controlled, and patients without GVHD were evaluated; patients with active aGVHD had a higher percentage of Tc1 (p<0.01) and Tc17 (p<0.05) cells, as opposed to patients without GVHD in whom a higher percentage of CD8 Treg cells (p<0.01) was found. These findings indicate that the increase in Tc1 and Tc17 cells is associated with GVHD development, while regulatory CD8 T cells might have a protective role in this disease. These tests can be used to monitor and control GVHD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1940-1940 ◽  
Author(s):  
Takeshi Sugio ◽  
Koji Kato ◽  
Takatoshi Aoki ◽  
Takanori Ota ◽  
Noriyuki Saito ◽  
...  

Abstract [Introduction] Adult T-cell leukemia/lymphoma (ATL) is an aggressive peripheral T-cell lymphoma (PTCL) with a dismal prognosis. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative treatment in ATL patients. Mogamulizumab, a humanized anti-CC chemokine receptor 4 (CCR4) monoclonal antibody, is a novel immunotherapeutic agent, effective in treating patients with PTCL such as ATL, PTCL-not specified, and cutaneous T-cell lymphoma. However, in allo-HSCT setting, we should be careful to use mogamulizumab because CCR4 is expressed in regulatory T cells: The mogamulizumab treatment may accelerate GVHD by eradicating regulatory T cells in allo-HSCT patients. Here, we retrospectively analyzed the effect of mogamulizumab on GVHD development in ATL patients treated with mogamulizumab prior to allo-HSCT. [Patients and Methods] Data from the Fukuoka Bone Marrow Transplantation Group were retrospectively analyzed after the approval of mogamulizumab use in Japan. [Results] A total of 24 patients with ATL received mogamulizumab prior to allo-HSCT between April 2012 and April 2015 in our group. The median age at allo-HSCT was 58.5 years (range, 32-72). The median intervals from the last administration of mogamulizumab to allo-HSCT were 25 days (range, 9-126). The median total dose of mogamulizumab was 3 mg/kg (range, 1-8 mg/kg). After treatment with mogamulizumab, 18 patients (75%) had achieved in remission (CR in 4 patients and PR in 14) at allo-HSCT. Ten patients received unrelated bone marrow, 5 received related peripheral blood, and 9 received cord blood as stem cell sources. Eleven patients were treated with full-intensity conditioning and 13 received reduced-intensity conditioning. Graft-versus-host disease (GVHD) prophylaxis consisted of calcineurin inhibitors (cyclosporine or tacrolimus) with short-term methotrexate in 14 patients and mycophenolate mofetil in 9. The cumulative incidence (CI) of acute GVHD at 100 days was 66.6% in grade 2-4 and 33.3% in grade 3-4. The involved organs of acute GVHD were skin in 14 patients, gut in 10, and liver in 4. Among 14 patients who developed grade 2-4 acute GVHD, 5 had severe fluid retention such as pleural effusion or ascites associated with GVHD. Chronic GVHD was observed in 6 patients, and 5 of them were extensive disease. The CI of transplant-related mortality (TRM) and relapse at 1-year were 53.2% (95%CI, 29.3-72.3%) and 29.6% (95%CI, 12.6-48.9%), respectively. The leading cause of death was GVHD (n = 7). The 1-year overall survival and progression-free survival were 19.2% (95%CI, 5.7-38.8%) and 17.2% (95%CI, 4.9-35.7%), respectively. [Discussion] Use of mogamulizumab prior to transplantation in allo-HSCT patients has a merit to decrease the burden of ATL cells. However, it was associated with an increase of TRM due to severe GVHD. Although most of ATL patients achieved better disease status at allo-HSCT through mogamulizumab and the survival rate was expected to be 50% based on the previous data, the survival in the present study was ~20%. These data suggest that mogamulizumab administered before transplantation may have retained until an early phase of post-transplantation, and the donor or host-derived regulatory T cells might be eliminated, allowing the GVHD T-cell clone to expand. Since mogalizumab is a potent anti-ATL agent, we need to develop new treatment protocols integrating mogalizumab at a suitable dose or administration timing, to minimize the unwanted GVHD development in future studies. Disclosures Akashi: Asahi Kasei: Research Funding, Speakers Bureau; Shionogi: Research Funding, Speakers Bureau; Astellas: Research Funding, Speakers Bureau; Celgene: Research Funding, Speakers Bureau; Chugai: Research Funding, Speakers Bureau; Bristol-Myers Squibb: Research Funding, Speakers Bureau; Novartis Pharma K.K.: Consultancy, Research Funding, Speakers Bureau; Kyowa Hakko Kirin Co., Ltd.: Consultancy, Research Funding, Speakers Bureau.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3390-3397 ◽  
Author(s):  
Laurent Burnier ◽  
François Saller ◽  
Linda Kadi ◽  
Anne C. Brisset ◽  
Rocco Sugamele ◽  
...  

Abstract Growth arrest-specific gene 6 (Gas6) is expressed in antigen-presenting cells and endothelial cells (ECs) but not in T cells. When wild-type (WT) or Gas6−/− mice received allogeneic non–T cell–depleted bone marrow cells, hepatic graft-versus-host disease (GVHD) was alleviated in Gas6−/− recipients regardless of donor genotype, but not in WT recipients. T-cell infiltration was more prominent and diffuse in WT than in Gas6−/− recipients' liver. When mice received 0.5 × 106 allogeneic T cells with T cell–depleted allogeneic bone marrow, clinical signs indicated that GVHD was less severe in Gas6−/− than in WT recipients, as shown by a significant improvement of the survival and reduced liver GVHD. These data demonstrate that donor cells were not involved in the protection mechanism. In addition, lack of Gas6 in antigen-presenting cells did not affect WT or Gas6−/− T-cell proliferation. We therefore assessed the response of WT or Gas6−/− ECs to tumor necrosis factor-α. Lymphocyte transmigration was less extensive through Gas6−/− than WT ECs and was not accompanied by increases in adhesion molecule levels. Thus, the lack of Gas6 in ECs impaired donor T-cell transmigration into the liver, providing a rationale for considering Gas6 pathway as a potential nonimmunosuppressive target to minimize GVHD in patients receiving allogeneic hematopoietic stem cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document